Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1 Product identifiers

Commercial Product Name:	PiaNOx [®] - A
Substance name:	Ammonia
Chemical Formula:	NH3
CAS-No.:	7664-41-7
Index-No.:	007-001-00-5
EC-No.:	231-635-3
REACH Registration Number:	01-2119488876-14-0029

1.2 Identified uses

For nitrogen and Sulphur removal from combustion exhaust gases.

ERC1 (PROC 1, 2, 8b, 15); ERC2 (PROC 1, 2, 3, 8b, 9, 15); ERC 7 (PROC 1, 3, 8b,9); ERC6b (PROC 1, 2, 8a, 8b); ERC7 (PROC 1, 3, 8b, 9); ERC6a (PROC 1, 2, 3, 4, 8b, 9, 15)

1.3 Details of the supplier of the safety data sheet

SKW Stickstoffwerke Piesteritz GmbH Möllensdorfer Str. 13	Telephone: +49 3491 68 0 Telefax: +49 3491 68 4300
06886 Lutherstadt Wittenberg, Deutschland E-mail address:	SDB@skwp.de
1.4 Emergency telephone number	
SKW: 24-hour emergency number of the GGIZ: National emergency number EU:	+49 3491 68 2202 +49 361 730 730 https://echa.europa.eu/de/support/helpdesks/

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) No 1272/2008 [CLP]:

Hazard class / Hazard category	Hazard statements	Classification procedure
Flam. Gas 2	H221	according to the Globally Harmonized System
Press. Gas	H281	according to the Globally Harmonized System
Acute Tox. 3	H331	according to the Globally Harmonized System
Skin Corr. 1B	H314	according to the Globally Harmonized System
Aquatic Acute 1	H400	according to the Globally Harmonized System

2.2 Label elements

Labelling according to Regulation (EC) No 1272/2008 [CLP]:

Product identifier:	PiaNO [®] - A
Index-No.:	007-001-00-5
EINECS-No.:	231-635-3

Hazardous components which must be listed on the label:

- Ammonia, anhydrous

Hazard pictograms:

Signal word:

Danger

SAFETY DATA SHEET according~~to~~Regulat	
SAFETT DATA SHEET according~~to~~Regulat	101~~(EC)~~NO.~~1907/2006(REACH)
PiaNOx [®] - A	
Identcode: 0043	Revision Date: 17.04.2024

Print Date: 17.04.2024

Hazard statements:

Version: 6.0 (MSDS_DE/EN)

H221	Flammable gas.
H281	Contains refrigerated gas; may cause cryogenic burns or injury.
H314	Causes severe skin burns and eye damage.
H331	Toxic if inhaled.
H400	Very toxic to aquatic life.

Precautionary statements:

P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
P273	Avoid release to the environment.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P303 + P361 + P353	IF ON SKIN (or hair): Remove/ Take off immediately all contaminated clothing. Rinse skin
	with water/ shower.
P304 + P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for
	breathing.
P311	Call a POISON CENTER/ doctor.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.

2.3 Other hazards

Adverse human health effects and symptoms:

Eye Dam. 1; H318 - Causes serious eye damage. EUH071 - Corrosive to the respiratory tract.

Potential environmental effects:

Aquatic Chronic 2; H411 - Toxic to aquatic life with long lasting effects.

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substance related information

Chemical identity:	Ammonia
Index-No.:	007-001-00-5
EC-No.:	231-635-3
REACH Registration Number:	01-2119488876-14-0029
CAS-No.:	7664-41-7
Purity:	> 99,7 %
Molecular formula:	NH3

Additional advice:

Thise substance does not meet the PBT-/vPvB criteria of REACH, annex XIII.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General Information:	First aider needs to protect himself. Take off all contaminated clothing immediately. Call a physician immediately. Victim to lie down in the recovery position, cover and keep him warm. In case of shortness of breath, give oxygen. Move victims to fresh air and do not leave them without supervision.
If inhaled:	Call a physician immediately. No artificial respiration, mouth-to-mouth or mouth to nose. Use suitable instruments/apparatus. In case of accident by inhalation: remove casualty to fresh air and keep at rest. Ensure the presence of fresh air.
In case of skin contact:	Wash off immediately with plenty of water. Wash frost-bitten areas with plenty of water. Do not remove clothing. Call a physician immediately.
In case of eye contact: If swallowed:	Immediately flush eye(s) with plenty of water. Call a physician immediately. Call a physician immediately.

4.2 Most important symptoms and effects, both acute and delayed

Symptoms of poisoning may not appear for several hours. Keep under medical supervision for at least 48 hours.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

4.3 Indication of any immediate medical attention and special treatment needed

Symptoms:

Shortness of breath. Cough. Unconsciousness. Aspiration may cause pulmonary oedema and pneumonitis. Risk of frostbite.

Hazards:

Later control for pneumonia and lung oedema.

Treatment:

Control of circulatory system, shock therapy if needed. Oxygen, if needed. Treat frost-bitten areas as needed. Early administration of cortisone spray.

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media:	Foam. Water. Water mist. Water spray jet.
Unsuitable extinguishing media:	High volume water jet. Do not let water come into contact with liquid ammonia.

5.2. Special hazards arising from the substance or mixture

Vapours may form explosive mixtures with air. Changes quickly into gaseous form. In presence of air, forms cold mists which have poisonous and corrosive effects and which are heavier than air.

5.3 Advice for firefighters

Self-contained breathing apparatus (EN 133). Complete suit protecting against chemicals.

Additional advice:

Collect contaminated fire extinguishing water separately. This must not be discharged into drains. Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. Cool containers/tanks with water spray.

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Provide sufficient air exchange and/or exhaust in work rooms. Keep people away from and upwind of spill/leak. Remove all sources of ignition. Move unprotected people to a safe area. Equip personnel with a complete gasproof suit protecting against chemicals and a self contained breathing apparatus. When using liquid ammonia protect personnel from freezing injuries. Use of woollen gloves and warm underwear is necessary.

6.2 Environmental precautions

Suppress (knock down) gases/vapours/mists with a water spray jet. Do not let enter drains/ surface water/ ground water.

6.3 Methods and materials for containment and cleaning up

Do not direct water spray onto the leak. Put into suitable containers and take for recycling or disposal. Use respiratory protection during cleaning up.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Handle substance within a closed system. Provide sufficient air exchange and/or exhaust in work rooms.

<u>Fire prevention measures</u>: Keep away from heat and sources of ignition. Handle exclusively in the open or in explosion proof areas. Provide emergency cooling in case of a fire in the vicinity.

7.2 Conditions for safe storage, including any incompatibilities

<u>Requirements for storage areas and containers:</u> Keep containers tightly closed in a cool, well-ventilated place. Keep away from heat. Avoid subsoil penetration. Handle exclusively in the open or in explosion proof areas. Keep and store locked up, with access only for competent personnel. Provide (catchment area) containment bund without drain. Provide alkali-resistant floor. Only use containers specifically approved for this substance.

German storage class: 2A - Compressed, liquefied or pressurised gas

7.3 Specific end use(s)

none

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Exposure limit(s):

Components	CAS-No.	Control	parameters	Ceiling Limit Value		Update	Basis
Ammonia, anhydrous	7664-41-7	20 ml/m ³ 14 mg/m ³		I (2)	AGW	12/2007	TRGS 900
Biological occupational expo	osure limits:	ı	none				
DNEL - Workers:							
dermal, Acute systemic effect effects	ts, Long-term sys	stemic	6.8 mg/kg	- relative to NH ₃			
inhalative, Acute systemic effects, Long-term systemic effects		47.6 mg/kg - relative to NH ₃					
DNEL - Consumers:							
dermal, Acute systemic effect effects	ts, Long-term sys	stemic	6.8 mg/kg	- relative to NH ₃			
inhalative, Acute systemic effects, Long-term systemic effects		23.8 mg/kg - relative to NH ₃					
oral, Acute systemic effects, Long-term systemic effects		6.8 mg/kg - relative to NH ₃					
PNEC - aquatic:							
Marine water			0.0011 mg	/I - free ammonia			
aquatic, freshwater		0.0011 mg	/I - free ammonia				
2 Exposure controls							

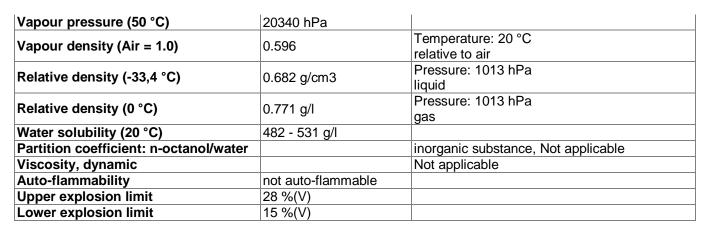
8.2 Exposure controls

Personal protective equipment:

Eye/face protection:	Tightly fitting safety goggles. Ensure that the type of material and the quality of the body protective equipment correspond with the recommendations of the producer for your particular type of work.
Hand protection:	Protective gloves for chemicals Ensure that the type of material and the quality of the body protective equipment correspond with the recommendations of the producer for your particular type of work. Follow EN 374.
Skin and body protection:	Complete suit protecting against chemicals. Ensure that the type of material and the quality of the body protective equipment correspond with the recommendations of the producer for your particular type of work.
Hygiene measures:	When using do not eat, drink or smoke.
Respiratory protection:	In case of insufficient ventilation, wear suitable respiratory equipment. Self- contained breathing apparatus (EN 133). For a short time, respirator with filter, filter type K.

General protective measures:

Avoid contact with skin. Do not breathe vapours or spray mist. Avoid contact with eyes.


9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

Physical state	Liquefied gas	
Colour	colourless	
Odour	ammoniacal, stinging	
рН	ca. 11	Concentration: 0.35 %
Melting point/range	-77.7 °C	Pressure: 1013 hPa
Initial boiling point	-33.4 °C	Pressure: 1013 hPa
Flash point		Not applicable
Ignition temperature	651 °C	
Vapour pressure (20 °C)	8611 hPa	

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

9.2 Other data

none

10. STABILITY AND REACTIVITY

10.1 Reactivity

Vapours may form explosive mixture with air. With acids and strong oxidising agents.

10.2. Chemical stability

No decomposition if stored and applied as directed.

10.3 Possibility of hazardous reactions

With acids and strong oxidising agents. Vapours may form explosive mixture with air. Because of the high vapour pressure the containers can burst with increased temperature.

10.4. Conditions to avoid

Keep away from heat and sources of ignition.

10.5. Incompatible materials to avoid

Strong acids and oxidizing agents, Corrodes copper and brass.

10.6 Hazardous decomposition products

Hazardous decomposition products:

Hydrogen. In case of fire, nitrous gases are possible.

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

	yical ellects	
Acute oral toxicity:	Dose LD50: Species: Method:	350 mg/kg Rat OECD Test Guideline 401
Acute inhalation toxicity:	Dose LC50: Exposure time: Species:	9850 ppm 1 h Rat
	Dose LC50: Exposure time: Species:	13770 ppm 1 h Rat
Acute dermal toxicity:	Study not provided with scientific ba	asis. Corrosive.
Skin irritation:	Study not provided with scientific basis. Corrosive.	
Eye irritation:	Study not provided with scientific ba	asis. Corrosive.
Sensitisation:	Result:	Not sensitizing.
Ames test:	Result:	Non mutagenic
Mutagenicity (micronucleus test):	s Result:	Non mutagenic

PiaNOx [®] - A		SKW.	
Identcode: 0043 Version: 6.0 (MSDS_DE/E	N)	Revision Date: 17.04.2024 Print Date: 17.04.2024	
Carcinogenicity:	Application Route: Species: Result:	oral Rat Animal testing did not show any carcinogenic effects.	
Subacute toxicity:	Application Route: NOAEL: Exposure time:	oral 68 mg/kg 35 Days	
	Application Route: NOAEL: Exposure time: Result:	Inhalation 63 mg/kg 50 Days The substance or mixture is not classified as specific target organ toxicant, repeated exposu	
Reproductive toxicity:	Application Route: Species: NOAEL F2 Result:	oral Rat 408 mg/kg none	
Teratogenicity:	Application Route: NOAEL: Species: Result:	oral 100 mg/kg Rabbit none	
Other data:	Toxic by inhalation. The product causes burns of eyes, skin and mucous membranes. Symptoms may be delayed. Risk of frostbite.		

12. ECOLOGICAL INFORMATION

12.1	То	xic	city	
------	----	-----	------	--

Toxicity to fish:	Dose LC50: Species: Exposure time:	0.89 mg/l Oncorhynchus mykiss (rainbow trout) 96 h
	Dose EC50: Species: Exposure time:	101 mg/l Daphnia (water flea) 48 h
Toxicity to algae:	Dose EC50: Species: Exposure time:	2700 mg/l Scenedesmus capricornutum (fresh water algae) 18 Days
Chronic toxicity to aquatic organisms:	Dose LOEC: Species: Exposure time:	0.022 mg/l Oncorhynchus mykiss (rainbow trout) 73 Days
	Dose NOEC: Species: Exposure time:	79 mg/l Daphnia magna (Water flea) 96 h

12.2 Elimination information (persistence and degradability)Biological degradability:Readily biodegradable.

12.3 Bioaccumulative potential

Result:

inorganic substance

Not applicable

Partition coefficient: noctanol/water

octanol/water

12.4 Mobility in soil

After release, adsorbs onto soil.

Does not bioaccumulate.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

12.5 Results of PBT and vPvB assessment

Result:

The substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006. Annex XIII.

12.6 Endocrine disrupting properties

No data available.

12.7 Other adverse effects

Additional ecological information:

Very toxic to aquatic organisms. Depending on local conditions and actual concentrations, addition into adapted biological water treatment plants can damage the degradation activity of activated sludge.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Waste key for the unused product:

16 05 04 gases in pressure containers (including halons) containing hazardous substances

Waste from residues:

Contact manufacturer. Can be used after re-conditioning.

Contaminated packaging:

Empty pressurised containers must be returned to the supplier with a residual pressure.

14. TRANSPORT INFORMATION

Land transport (ADR/RID/GGVSEB):

UN number: Proper technical name: Class: Hazard Identification Number: Classification Code: Packing group Labels:	1005 AMMONIA, ANHYDROUS 2 268 2TC 2.3 + 8
Tunnel restriction code: Labelling: Sea transport (IMDG-Code/GGVSee): UN number: Proper technical name: Class: Packing group Labels:	(C/D) Dangerous for the environment 1005 AMMONIA, ANHYDROUS 2.3 2.3 + 8
Marine pollutant: EmS:	no F-C, S-U

15. REGULATORY INFORMATION

National	legislation ((Germany):
----------	---------------	------------

<u>Major Accident Hazard</u> Legislation:	12. BImSchV app. I
<u>Water contaminating class</u> (Germany):	WGK 2, obviously hazardous to water
TA Luft List (Germany):	Paragraph 5.2.4 class III NH3
Other regulations:	r processional and containers. Working with processional and containers"

TRG 280 "General requirements for pressurised gas containers, Working with pressurised gas containers" TRG 101 "Pressurised gases, Gases" BGV B6 "Gases" Work restrictions for young people. Occupational restrictions for pregnant and breast feeding women

SAFETY DATA SHEET according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
PiaNOx [®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024

Print Date: 17.04.2024

15.2 Chemical safety assessment:

A Chemical Safety Assessment has been carried out for this substance.

16. OTHER INFORMATION

Relevant R-, H- and EUH-phrases (Number and full text):

H221:	Flammable gas.
H281:	Contains refrigerated gas; may cause cryogenic burns or injury.
H314:	Causes severe skin burns and eye damage.
H331:	Toxic if inhaled.
H400:	Very toxic to aquatic life.

Further information:

The data corresponds to our current knowledge and describes our product with regard to safety requirements. Therefore the data is not meant to warranty certain properties of the product. It is the responsibility of the receiver of our product to comply with current legislation and regulations.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

17. ANNEX : EXPOSURE SCENARIO (Annex to extended Safety Data Sheet (eSDS))

Downstream user Exposure Scenario for Ammonia

Exposure Scenario 1: Manufacture of Ammonia

1 **Exposure Scenario 1** Manufacture of anhydrous ammonia Processes Covered: **Environmental Releases** ERC1: Manufacture of substances Worker Processes PROC01: Use in closed process, no likelihood of exposure. PROC02: Use in closed, continuous process with occasional controlled exposure. PROC08a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at nondedicated facilities. PROC08b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities. Anhydrous ammonia (>99.5 % wt) is manufactured by high temperature and pressure synthesis in large facilities. A typical ammonia-producing industrial plant first coverts natural gas (e.g. methane), liquefied petroleum gas (e.g. propane and butane) or petroleum naphtha into gaseous hydrogen. The method for producing hydrogen from hydrocarbons is referred to as "steam reforming". Several processes are involved in producing hydrogen from a natural gas feedstock including sulphur and carbon dioxide removal and methanation to remove any small residual amounts of carbon dioxide or carbon monoxide. Catalytic shift conversion is used to convert CO to CO₂ and hydrogen. Hydrogen is then catalytically reacted with nitrogen (derived from air) in the ratio 3:1 by volume and compressed to around 200 times atmospheric pressure (up to 1000 atm or 100 megapascals) at high temperatures of around 700°C to form anhydrous liquid ammonia. This step is known as the ammonia synthesis loop (e.g. the Haber-Bosch process). Contributing Environmental Scenario: Environmental exposure arising from the manufacture of anhydrous ammonia. Contributing Worker Scenarios: Worker exposure arising due to day to day use in closed processes with no likelihood of exposure, day to day use in closed continuous processes with occasional exposure (such as sampling) and Transfer of substance to and from vessels and containers. 2.1 Contributing scenario 1 controlling environmental exposure for ES 1 Environmental exposure arising due manufacture of anhydrous ammonia. Section 2.1 describes the environmental releases that may occur during the manufacture of Ammonia. These releases may occur due to emission to wastewater or through emission to the atmosphere. If emission to wastewater occurs on-site treatment in an industrial waste water treatment plant will be required in order to remove downstream emissions to the environment. In reality removal of ammonia in sewage treatment plants is highly efficient being removed first by nitrification to nitrate followed by denitrification resulting in the release of nitrogen gas. It is considered that if these processes are employed complete removal from the wastewater stream will occur. Emissions to the atmosphere should not exceed concentrations of 40 mg/m³.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 48200-53100 mg/L. Anhydrous ammonia is considered to be flammable.

Amounts used

Production sites may manufacture up to a largest individual site value of 950,000 tonnes per annum, with approximately 6.5 million tonnes produced per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use

Frequency of use is estimated to be 220 days per year, with a standard 8 hour working day.

Environmental factors not influenced by risk management

Flow rate of receiving water at least 18,000 m³ per day. Dilution of STP emissions at least 10 fold.

Other operational conditions affecting environmental exposure

Production takes place in a highly specialized indoor facility with emissions to air being controlled. Reactions are performed under closed conditions, with transfer pipelines are either fully or partially closed systems. Emission via wastewater is prevented by on-site WWTP processes. Manufacturing processes may be indoor or outdoor.

Technical conditions and measures at process level (source) to prevent release

Manufacture is carried out indoors or outdoors in dedicated facilities. Losses to surface water or the municipal STP should be prevented by nitrification to nitrate followed by denitrification resulting in the release of nitrogen gas. With regards to environmental emissions the loss of aqueous ammonia is most relevant as once the anhydrous ammonia reacts with wastewater or atmospheric moisture aqueous ammonia will be formed.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Waste water should be emitted to the on-site WWTP for specialized removal. Emissions to air from manufacturing or from the onsite WWTP should not exceed a concentration of 40 mg/m³ of air. This is approximately equivalent to a total loss to air of 140,000 kg/day. Sludge from the on-site WWTP should not be spread to soil. Any solid waste will be sent as waste for landfill, incineration or recycling.

Organizational measures to prevent/limit releases from site

Workers are fully trained in order to prevent accidental release and exposures may be monitored to ensure airborne concentrations are within acceptable levels.

Conditions and measures related to municipal STP

Direct emissions to the municipal STP should not be made.

Conditions and measures related to external treatment of waste for disposal

Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the manufacturing process. Sludge from the onsite WWTP should be recycled, incinerated or sent to landfill. Conditions and measures related to external recovery of waste

There is no envisaged external recovery of waste. Waste sludge is reduced and then incinerated and emissions to air are not collected.

2.2 Contributing scenario 2 controlling worker exposure for day to day use in closed processes with no likelihood of exposure.

Worker exposure arising due to day to day use in closed processes with no likelihood of exposure during the manufacturing process.

Section 2.2 describes the potential exposure to workers during the manufacture of anhydrous ammonia from operation of closed systems with occasional potential for exposure during tasks such as sampling, maintenance and cleaning. The potential exposure arises from the operation of the reactor and its associated machinery.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Manufactured anhydrous liquid ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia). During tasks such as cleaning and sampling, suitable protective clothing and equipment is available.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Product characteristics

The produced substance is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000mg/L. Anhydrous ammonia is considered to be flammable.

Amounts used

Production sites may produce up to 950,000 tonnes per annum, with approximately 6.5 million tonnes produced per year in the European Union.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential for exposure during manufacture is generally considered to be of short duration, with limited potential for exposure. Tasks such as maintenance are carried out only rarely.

Exposure to workers was assessed taking into account different operational conditions that may be associated with the manufacturing of anhydrous ammonia and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90 % protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposure concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the manufacture of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not required.

Technical conditions and measures at process level (source) to prevent release

If being carried out indoors the transfer of the substance from the reactor vessel and the operation of the reactor vessel itself takes place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the reactor and associated machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.3 Contributing scenario 3 controlling worker exposure due to day to day use in closed continuous processes with occasional exposure (such as sampling) Worker exposure arising due to day to day use in closed continuous processes with occasional exposure (such as sampling). Section 2.3 describes the potential exposure to workers during the manufacture of anhydrous ammonia from operation of closed systems with occasional potential for exposure during tasks such as sampling, maintenance and cleaning. The potential exposure arises from the operation of the reactor and its associated machinery. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Manufactured anhydrous liquid ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia). During tasks such as cleaning and sampling suitable protective clothing and equipment is available. Product characteristics The produced substance is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 48200-53100 mg/L. Anhydrous ammonia is considered to be flammable. Amounts used Production sites may manufacture up to 950,000 tonnes per annum, with approximately 6.5 million tonnes produced per year in the European Union. Frequency and duration of use exposure Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential for exposure during manufacture is generally considered to be of short duration, with limited potential for exposure. Tasks such as maintenance are carried out only rarely. Exposure to workers was assessed taking into account different operational conditions that may be associated with the manufacturing of anhydrous ammonia and the impact of different exposure control measures. Exposures were determined for task durations of 1-4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90 % protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposure concentrations were determined assuming either no RPE or RPE affording 95% protection is worn. Human factors not influence by risk management Respiration volume under conditions of use: 10 m³/d Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default). Other given operational conditions affecting worker exposure During the manufacture of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not required. Technical conditions and measures at process level (source) to prevent release If being carried out indoors the transfer of the substance from the reactor vessel and the operation of the reactor vessel itself takes place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia. Technical conditions to control dispersion from source towards worker LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers are fully trained in safe use of the reactor and associated machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills, normal loading and unloading operations, cleaning and maintenance. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

Contributing scenario 4 controlling worker exposure for transfer of produced ammonia to and from vessels and containers

Worker exposure arising due to transfer of produced ammonia to and from vessels and containers.

Section 2.4 describes the potential exposure to workers during the transfer of manufactured of anhydrous ammonia. The potential exposure arises from the transfer of the substance from the reactor to storage areas or vessels. Workers involved in this transfer of the substance will be exposed in the manual handling of the substance to storage vessels and potentially during the loading of road and rail tankers.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Manufactured anhydrous liquid ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia). Product characteristics

The transferred substance is a colourless gas (or a liquid at high pressure) at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

Amounts used

2.4

Production sites may manufacture up to 950,000 tonnes per annum, with approximately 6.5 million tonnes produced per year in the European Union. It is expected that all produced amounts will be transferred to vessels or tanks at some point.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Transfer of ammonia may be carried out for periods from 1 to 4 hours or greater than 4 hours with limited potential for exposure due to the nature of the associated systems.

Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

When the transfer of ammonia from the reactor vessel is carried out indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the transfer processes are carried out outdoors LEV is not required. Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating values

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and

SAF	ET	Y	DA	ΤΑ	SHEET	according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
			<u> </u>	-		

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and

points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks and is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions and measures at process level (source) to prevent release

If being carried out indoors the transfer of the substance from the reactor vessel to storage tanks or areas takes place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not always required.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations. All transfer pipelines should be sealed to prevent leaks.

Organizational measures to prevent/limit release

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

During transfer of produced ammonia workers may potentially be exposed to ammonia when operating equipment (e.g. valves, pumps or filling tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

3

Exposure estimation and reference to its source

The assessment of worker exposure to anhydrous ammonia during manufacturing (ES 1) was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), maintenance and clean-down (PROC 8a) and transfer (PROC 8b). A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes.

Exposure to workers was assessed taking into account different operational conditions that may be associated with the manufacturing of anhydrous ammonia and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90 % protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposure concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

For environmental emissions complete removal in the on-site WWTP was considered during derivation of the values below.

Information for contributing scenario 1 (environmental exposure):

The following PEC values were calculated using EUSES 2.1

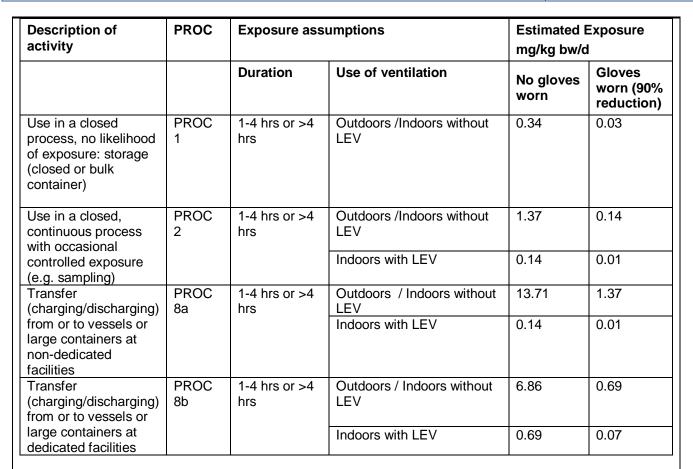
Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024

Print Date: 17.04.2024

PEC	Values
PEC in sewage effluent	0 (due to complete removal)
PEC in aquatic compartment (mg/L): Freshwater	3.48 x 10 ⁻³
Marine Water	7.61 x 10 ⁻⁴
PEC in sediments (mg/kg):	
Freshwater sediments	3.76 x 10 ⁻³
Marine water sediments	8.24 x 10 ⁻⁴
PEC in soil and groundwater:	Upon contact with soil, ammonia will be rapidly converted by a variety of bacteria, actinomycetes and fungi to ammonium (NH ₄ ⁺) by the process of ammonification or mineralization.
	Ammonium is then rapidly converted to nitrate. Nitrate is subsequently taken up and utilised by plants or returned to the atmosphere following denitrification; the metabolic reduction of nitrate into nitrogen or nitrous oxide (N2O) gas. The most likely fate of ammonium ions in soils is conversion to nitrates by nitrification. Therefore accumulation of concentrations of ammonia in soil and groundwater will not be expected.
PEC in air: annual average (mg/m ³)	36.1

The following RCR values were obtained:

Compartments	PEC	PNEC	PEC/PNEC	Discussion
Freshwater (Tier 2)	$\begin{array}{c} 3.48 \times 10^{-3} \\ \text{mg/L} \\ (\text{Total} \\ \text{Ammonia}) \\ 1.33 \times 10^{-4} \\ \text{mg/L} \\ (\text{Free} \\ \text{Ammonia}) \end{array}$	0.0011 mg/l (Free Ammonia)	0.121	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25°C. (Ref data tabulated in EPA document EPA-600/3-79-091)
Marine water (Tier 2)	$\begin{array}{c} 8.24 \times 10^{-4} \\ \text{mg/L} \\ (\text{Total} \\ \text{Ammonia}) \\ 3.15 \times 10^{-5} \\ \text{mg/L} \\ (\text{Free} \\ \text{Ammonia}) \end{array}$	0.0011 mg/l (Free Ammonia)	0.029	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)


The following values were obtained using ECETOC TRA for worker exposure

Dermal exposures to anhydrous ammonia predicted using the ECETOC TRA model for industrial workers during manufacturing

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Inhalation exposure concentrations for anhydrous ammonia predicted using the ECETOC TRA model for industrial workers during manufacturing

Description of activity	PROC	Exposure assumptions		Estimated In Exposure Co mg/m3	
		Duration	Use of ventilation	No RPE	RPE (95% reduction)
Use in a closed process, no likelihood of exposure: Storage	PROC 1	1-4 hrs or >4 hrs	Outdoors	0.00	NA
(closed bulk or container)			Indoors without LEV	0.01	NA
Use in a closed, continuous process	PROC 2	>4hrs	Outdoors	24.79	1.24
with occasional controlled exposure			Indoors without LEV	35.42	1.77
(e.g. sampling)			Indoors with LEV	3.54	0.18
		1-4 hrs	Outdoors	14.88	0.74
			Indoors without LEV	22.25	1.06
			Indoors with LEV	2.13	0.11
Transfer (charging/discharging)	PROC 8a	>4hrs	Outdoors	123.96	6.20
from or to vessels or			Indoors without LEV	177.08	8.85
large containers at			Indoors with LEV	17.71	0.89
non-dedicated		1-4 hrs	Outdoors	74.38	3.72
facilities			Indoors without LEV	106.25	5.31
			Indoors with LEV	10.63	0.53
Transfer (charging/discharging)	PROC 8b	>4hrs	Outdoors	74.38	3.72

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

from/to vessels or large containers at		Indoors without LEV	106.25	5.31
dedicated facilities		Indoors with LEV	3.19	0.16
	1-4 hrs	Outdoors	44.63	2.23
		Indoors without LEV	63.75	3.19
		Indoors with LEV	1.91	0.10

The following RCR values were obtained using ECETOC TRA and the relevant DNELs

Quantitative risk characterisation of dermal exposures to anhydrous ammonia for industrial workers

PROC code	Exposur	e assumptions	ES 1- expo concentrat mg/kg bw/	tions (EC)	Acute / long term systemic effects DNEL = 6.8 mg/kg bw/d	
					Risk char ratio	racterisation
	Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	No gloves worn	Gloves worn (90% reduction)
PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01
PROC 2	1-4 hrs or >4	Outdoors /Indoors without LEV	1.37	0.14	0.20	0.02
	hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20
8a	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10
8b	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01

Quantitative risk characterisation of inhalation exposure concentrations of anhydrous ammonia for workers

PROC code	Exposure assumptions		ES 1- ex concent (EC) mg	rations	Acute / term system effects DNEL = mg/m3	ic	Acute- effects DNEL mg/m3	s = 36	Long- local effects DNEL mg/m3	s = 14
			RCR		R	RCR		RCR		
	Duration	Use of ventilatio n	No RPE	RPE -95% reduction	No RPE	RPE – 95%	No RPE	RPE 95% reduction	No RPE	RPE -95% reduction
PROC	1-4	Outdoors	0.00	NA	<0.001	NA	<0.01	NA	<0.01	NA
1	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.001	NA	<0.01	NA	<0.01	NA
	>4hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

PROC 2		Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
_		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4	Outdoors	14.88	0.74	0.31	0.02	0.41	0.02	1.06	0.05
	hrs	Indoors without LEV	22.25	1.06	0.47	0.02	0.59	0.03	1.52	0.08
		Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01
PROC	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
8a		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
8b	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	3.19	0.16	0.07	0.00	0.09	<0.01	0.23	0.01
	1-4 hrs	Outdoors	44.63	2.23	0.94	0.05	1.24	0.06	3.19	0.16
		Indoors without LEV	63.75	3.19	1.34	0.07	1.77	0.09	4.55	0.23
		Indoors with LEV	1.91	0.10	0.04	0.00	0.05	<0.01	0.14	0.01

4

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environmental releases:

In order to work within the boundaries of the ES the following conditions should be met:

- Local emission to air less than 40 mg/m³
- When the on-site WWTP is used the WWTP sludge should not be spread to soil
- Emissions from the waste-water stream should be completely removed
- Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the manufacturing process.
- Measured emissions should be ensured to lead to concentrations in the environment which are less than the relevant PNEC

Worker exposure:

In order to work within the boundaries of the ES the following conditions should be met:

- LEV should be in place in indoor facilities at times when natural ventilation is not sufficient.
- Where the potential for dermal exposure exists, gloves with a minimum efficiency of 90% and RPE with 95% efficiency should be worn.
- Health monitoring should be conducted regularly to ascertain the potential levels of exposure.
- Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise.

SAFETY DATA SHEET according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH
PiaNOx [®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

- All technological devices should have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.
- Workers should be fully trained.
- Any measured worker exposure levels should be confirmed to be below the relevant DNEL as presented in section 3 above.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Downstream user Exposure Scenario for Ammonia

Exposure Scenario 2: Distribution and Formulation of Ammonia

1	Exposure Scenario 2
Distribution	and formulation of anhydrous ammonia
Processes C Environmer	overed: Ital Releases
ERC2: Form Worker Proc	ulation of preparations cesses
PROC02: Us PROC03: Us	e in closed process, no likelihood of exposure. is in closed, continuous process with occasional controlled exposure. is in closed batch processes is in batch and other processes where the potential for exposure occurs
PROC05: Mi PROC08a: 1	xing and blending ransfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-
dedicated fa	Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at cilities.
	ansfer of formulations to small containers. boratory use
users. Anhyc of ammonia.	d anhydrous liquid ammonia (>99.5 % wt) is distributed widely to many industrial and municipality frous liquid ammonia is transported to chemical formulation facilities which produce aqueous solutions Aqueous ammonia products are then distributed to a wide range of industrial end-users and is also uce products for professional and consumer users.
in specialise transported i or 80% full. 7	d anhydrous liquid ammonia is stored and transported as a liquid under pressure by rail, road or water d, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia). When n tanks, the pressure on the tank is the liquid pressure and remains the same whether the tank is 10% The maximum filling level of an anhydrous ammonia tank is 85%. Anhydrous liquid ammonia may also d to end-user industries via pipeline systems.
ammonia pro water to proc solution proc	quid ammonia is used to produce aqueous ammonia solutions (5-25% w/w). The anhydrous liquid aduct is transported to chemical manufacturing facilities by rail or road where it is blended with deionised luce solutions of aqueous ammonia that are used for a broad range of applications. Aqueous ammonia lucts are distributed to a wide range of industrial users by road or rail in various quantities (e.g. tanks and 50 liter containers). Distributors of anhydrous and aqueous ammonia can operate on a regional or l.
Contributing anhydrous a	Environmental Scenario: Environmental exposure arising due to distribution and formulation of mmonia.
likelihood of day to day maintenance	Worker Scenarios: Worker exposure arising due to day to day use in closed processes with no exposure, day to day use in closed continuous processes with occasional exposure (such as sampling), use in batch or other processes with some potential for exposure (such as sampling, cleaning, e), mixing and blending, transfer to small containers, transfer of substance to and from large vessels are and laboratory use.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

2.1	Contributing scenario 1 controlling environmental exposure for ES 2				
Environment	al exposure arising from the distribution and formulation of anhydrous ammonia.				
anhydrous a atmosphere. required in or In reality rem nitrate follow employed cor	describes the environmental releases that may occur during the distribution and formulation of mmonia. These releases may occur due to emission to wastewater or through emission to the If emission to wastewater occurs on-site treatment in an industrial waste water treatment plant will be reder to remove downstream emissions to the environment. Noval of ammonia in sewage treatment plants is highly efficient being removed first by nitrification to ed by denitrification resulting in the release of nitrogen gas. It is considered that if there processes are mplete removal from the wastewater stream will occur. Emissions to the atmosphere should not exceed he of 21.1 mg/m ³ .				
The vapour p soluble in wa be flammable range is expe	mmonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very ter: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to e. During formulation the formation of solutions of aqueous ammonia in the 5 – 25% concentrations ected.				
Amounts use					
3.8 million to	sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately nnes formulated per year in the European Union. According to the guidance for this tonnage band, EACH number of emission days per year are 330.				
Frequency a	nd duration of use				
	form standard shifts of 8 hours per day and have standard working years of 220 days per year. of ammonia is generally a short duration task, with limited potential for exposure.				
Environment	al factors influenced by risk management				
Flow rate of r	eceiving water at least 18,000 m ³ per day. Dilution of STP emissions at least 10 fold.				
Other operati	onal conditions affecting environmental exposure				
Workers are	fully trained in safe use and the use of appropriate systems in order to prevent accidental release. ms are employed in order to prevent un-intended emissions.				
	nditions and measures at process level (source) to prevent release				
Systems and	transfer pipelines should be closed and sealed. On site WWTPs should be available at industrial sites minate emissions to the environment via contaminated wastewater.				
	site conditions and measures to reduce or limit discharges, air emissions and releases to soil				
Waste water distribution o equivalent to solid waste w	should be emitted to the on-site WWTP for specialized removal. Emissions to air from formulation and r from the onsite WWTP should not exceed a concentration of 21.1 mg/m ³ of air. This is approximately a total loss to air of 74,000 kg/day. Sludge from the on-site WWTP should not be spread to soil. Any vill be sent as waste for landfill, incineration or recycling.				
Organization	al measures to prevent/limit releases from site				
	fully trained in order to prevent accidental release and exposures may be monitored to ensure airborne as are within acceptable levels.				
Conditions a	nd measures related to municipal STP				
Direct emissions to the municipal STP should not be made.					
	nd measures related to external treatment of waste for disposal				
Residues ma	by be sent to external waste treatment, on-site effluent treatment or recycled back into the formulation dge from the onsite WWTP should be recycled, incinerated or sent to landfill.				
	nd measures related to external recovery of waste				
	nvisaged external recovery of waste. Waste sludge is reduced and then incinerated and emissions to				

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~	~No.~~1907/2006(REACH)
-------------------	-----------------------------------	------------------------

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)	Revision Date: 17.04.2024 Print Date: 17.04.2024	PIESTERITZ
2.2 Contributing scenario 2 con no likelihood of exposure.	ntrolling worker exposure day to day use in clos	ed processes with
Worker exposure arising due to day to day distribution and formulation processes.	y use in closed processes with no likelihood of e	exposure during the
Section 2.2 describes the potential exposur	e to workers during the formulation of preparation exposure arises from the operation of formulation	
Formulated solutions are stored and transp authorised containers (e.g. tanks and tank tr	n place to limit the risk of exposure to workers in orted as a liquid under pressure by rail, road or v rucks approved for transporting ammonia).	
Product characteristics		
The vapour pressure of ammonia, anhydror soluble in water: reported water solubility va	room temperature and pressure with a typical puri us is reported to be 8611 hPa at 20 °C. Anhydro alues are 482000-531000 mg/L. Anhydrous ammo ition of solutions of aqueous ammonia in the 5 –	us ammonia is very nia is considered to
Formulated aqueous ammonia has a vapour	r pressure of 287 hPa and is considered readily bio	odegradable.
Amounts used		
	ividual site tonnage of 1,000,000 tonnes per annum e European Union. According to the guidance for s per year are 330.	
Frequency and duration of use exposure		
	s per day and have standard working years of a duration task, with limited potential for exposure.	220 days per year.
Respiration volume under conditions of use:		
	er conditions of use: 480cm ² (ECETOC default).	_
	nonia indoors local exhaust ventilation may be i	n place Dereced
protective equipment is also used to minimiz the processes are carried out outdoors LEV	te the potential for dermal exposure during the transition is not generally required.	
Technical conditions and measures at proce	ess level (source) to prevent release	
not be in place (refer to section 3 below for r closed system is still employed however spe		rried out outdoors a
All technological devices have a proper qua the uncontrolled discharge of ammonia.	ality certification, and are regularly controlled and	maintained to avoid
Technical conditions to control dispersion fro	om source towards worker	
LEV should be in place during indoor opera should be closed and sealed systems.	tions when natural ventilation is not sufficient. Rea	actors and pipelines
Organizational measures to prevent/limit rele	ease	
in order to prevent accidental release. Freq programs.	ansfer and formulation and machinery and the use uent monitoring for health effects is conducted by r	
Conditions and measures related to persona	al protection, hygiene and health.	
valves, pumps or tanks etc). All operations a insulated and sampling is carried out with a points were emissions may occur. Ammon	nmonia when operating distribution and formulati re performed in a closed system. Pipelines and ves a closed sample loop. Extract ventilation is provid nia is stored in closed containers and tanks and ve a proper quality certification, and are regul rge of ammonia.	sels are sealed and ed at openings and d transferred under

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.3

Contributing scenario 3 controlling worker exposure due to day to day use in closed continuous processes with occasional exposure (such as sampling)

Worker exposure arising due to day to day use in closed continuous processes with occasional exposure (such as sampling).

Section 2.3 describes the potential exposure to workers during the distribution and formulation of preparations of ammonia from operation of closed systems with the potential for occasional exposure during tasks such as sampling, cleaning and maintenance. The potential exposure arises from the operation of formulation equipment and its associated machinery and during routine sampling, cleaning and occasional maintenance.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in these tasks. Formulated solutions are stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During formulation the formation of solutions of aqueous ammonia in the 5-25% concentrations range is expected. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Formulation sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately 3.8 million tonnes formulated per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Tasks such as sampling, cleaning and routine maintenance of ammonia distribution and formulation machinery are generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the formulation and mixing of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not generally required. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

If formulation is being carried out indoors the process should take place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the transfer and formulation and machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating distribution and formulation equipment (e.g. valves, pumps or tanks etc) or when carrying out specific tasks such as sampling, cleaning and maintenance. All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

Contributing scenario 4 controlling worker exposure for day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance)

Worker exposure arising due to day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance).

Section 2.4 describes the potential exposure to workers during day to day use of formulation and distribution machinery, pipelines and storage vessels. Potential exposure may occur during the day to day use however it is more likely to occur during tasks associated with the batch or other processes such as sampling of formulated solutions, cleaning and routine maintenance.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. formulated liquid ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During formulation the formation of solutions of aqueous ammonia in the 5 – 25% concentrations range is expected. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

2.4

Formulation sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately 3.8 million tonnes formulated per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Tasks such as sampling, cleaning and routine maintenance of ammonia distribution and formulation machinery are generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the formulation and mixing of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not generally required. RPE is provided when required.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions and measures at process level (source) to prevent release

If formulation is being carried out indoors the process should take place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the transfer and formulation and machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating distribution and formulation equipment (e.g. valves, pumps or tanks etc) or when carrying out specific tasks such as sampling, cleaning and maintenance. All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

Contributing scenario 5 controlling worker exposure for mixing and blending

Worker exposure arising due to mixing and blending in batch processes during formulation of preparations

Section 2.5 describes the potential exposure to workers during mixing and blending of ammonia formulations Potential exposure may occur during the day to day use of machinery and technologies associated with the blending and mixing process.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. formulated liquid ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

2.5

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During mixing and blending of the formulations the formation of solutions of agueous ammonia in the 5 - 25%concentrations range is expected. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Formulation sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately 3.8 million tonnes formulated per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Tasks such as mixing and blending and use of formulation machinery generally have limited potential for exposure due to the specialized nature of the technologies involved.

PiaNOx[®] - A

be flammable.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the blending and mixing of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not generally required. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

If mixing and blending is being carried out indoors the process should take place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of mixing and blending machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs. Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating mixing and blending equipment (e.g. valves, pumps or tanks etc). Operations are generally performed in a closed system. Pipelines and tanks are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.6	Contributing scenario 6 controlling worker exposure for transfer to small containers		
Worker exposu	re arising due to transfer to small containers in a dedicated filling line.		
Section 2.6 describes the potential exposure to workers during the filling of small containers in dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers themselves.			
Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the small sized containers.			
Product characteristics			
Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to			

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

During formulation the formation of solutions of aqueous ammonia in the 5-25% concentrations range is expected. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario.

Amounts used

Formulation sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately 3.8 million tonnes formulated per year in the European Union. Though it is unlikely that all this tonnage will be filled into small containers this amount has nonetheless been considered for the exposure assessment. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the filling of small containers indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not generally required. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

If formulation is being carried out indoors the process should take place in a fully closed system, LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a closed system is still employed however specific LEV is not required.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Pipelines and container filling equipment should be closed and sealed systems where possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the transfer and container filling machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating filling lines and during the filling of the small containers. Pipelines and vessels are sealed and insulated where possible. Extract ventilation is provided at openings and points were emissions may occur. The filled ammonia is stored in the closed small containers. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.7

Contributing scenario 7 controlling worker exposure for transfer to and from large containers and vessels

Worker exposure arising due transfer of ammonia to and from large containers and vessels

Section 2.7 describes the potential exposure to workers during the filling and loading to/from large containers and vessels in dedicated and non-dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers themselves.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the large sized containers.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During formulation the formation of solutions of aqueous ammonia in the 5-25% concentrations range is expected. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario.

Amounts used

Formulation sites may use up to a largest individual site tonnage of 1,000,000 tonnes per annum, with approximately 3.8 million tonnes formulated per year in the European Union. Though it is unlikely that all this tonnage will be filled into large vessels and containers this amount has nonetheless been considered for the exposure assessment. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the filling and transfer of ammonia to/from large vessels and containers indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. When the processes are carried out outdoors LEV is not generally required. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

If transfer to or from the large vessels or containers is being carried out indoors a LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). When carried out outdoors a specialized system is still employed however specific LEV is not required. The filling may be at dedicated or non-dedicated facilities however the transfer machinery will still be highly specialized and controlled.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Pipelines and container filling equipment should be closed and sealed systems where possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the transfer and container filling machinery and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating filling lines and during the filling of the large containers and vessels. Pipelines and vessels are generally sealed and insulated where possible. Extract ventilation is provided at openings and points were emissions may occur. The filled ammonia is stored in the closed small containers. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
-------------------	--

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia.

Filtering respiratory masks are worn in case on the accidental release of ammonia. 2.8 Contributing scenario 7 controlling worker exposure for laboratory use Worker exposure arising due to laboratory use of ammonia (small scale non-industrial laboratories). Section 2.8 describes the potential exposure to workers during laboratory use especially during the filling and loading of small flasks and vessels using non-dedicated filling lines or small scale transfer methods. Potential exposure is most likely to occur during tasks associated with the actual transfer or mixing of the ammonia solutions. For dedicated small scale laboratories appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Product characteristics Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. During laboratory use of ammonia solutions of aqueous ammonia in the 5 - 25% concentrations range are most liklety to be encountered. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario. Amounts used Amounts use in a non-industrial setting are likely to be small with less than 1 litre or 1 kilogram present on site. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330 however actual emission of ammonia is likely to be much less frequent in practice. Frequency and duration of use exposure Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Again use of ammonia is not likely to be this frequent in practice. Human factors not influence by risk management Respiration volume under conditions of use: 10 m³/d Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default). Other given operational conditions affecting worker exposure During the laboratory use of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. RPE is provided when required. Technical conditions and measures at process level (source) to prevent release During laboratory use LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases). All technological devices should have a proper quality certification, and should be regularly controlled and maintained to avoid the uncontrolled discharge of ammonia. Technical conditions to control dispersion from source towards worker LEV should be in place during indoor operations when natural ventilation is not considered sufficient or in enclosed areas. Organizational measures to prevent/limit release Laboratory workers are fully trained in safe use of chemicals in general and in the use of appropriate PPE in order to prevent accidental release or exposure. Conditions and measures related to personal protection, hygiene and health. Workers may potentially be exposed to ammonia during laboratory use when filling containers and vessels or during transfer. Extract ventilation is provided at openings and points were emissions may occur.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

3

Exposure estimation and reference to its source

The assessment of worker exposure to aqueous ammonia during formulation or to anhydrous and aqueous forms of ammonia during distribution (ES 2) was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), maintenance and clean-down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9) and analysis of samples (PROC 15). A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes.

Exposure to workers was assessed taking into account different operational conditions that may be associated with the formulation of aqueous ammonia solutions and the distribution of anhydrous and aqueous ammonia products and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90% protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposure concentrations were determined assuming either no RPE affording 95% protection is worn.

The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physicalchemical properties of a substance into account. The same dermal exposures where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight (35 g.mol⁻¹ and 17 g.mol⁻¹ for aqueous and anhydrous forms respectively and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6 x 10⁵ Pa at 20°C, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4 x10⁴ Pa at 20°C. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.

For environmental emissions complete removal in the on-site WWTP was considered during derivation of the values below. Emission values and environmental concentrations were calculated using the EUSES 2.1 model.

Information for contributing scenario 1 (environmental exposure):

The following PEC values were calculated using EUSES 2.1

PEC	Values
PEC in sewage effluent	0 (due to complete removal)
PEC in aquatic compartment (mg/L): Freshwater	1.3 x 10 ⁻³
Marine Water	3.14 x 10 ⁻⁴

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

PEC in sediments (mg/kg):	
Freshwater sediments	1.41 x 10 ⁻³
Marine water sediments	3.40 x 10 ⁻⁴
PEC in soil and groundwater:	Upon contact with soil, ammonia will be rapidly converted by a variety of bacteria, actinomycetes and fungi to ammonium (NH_4^+) by the process of ammonification or mineralization.
	Ammonium is then rapidly converted to nitrate. Nitrate is subsequently taken up and utilised by plants or returned to the atmosphere following denitrification; the metabolic reduction of nitrate into nitrogen or nitrous oxide (N2O) gas. The most likely fate of ammonium ions in soils is conversion to nitrates by nitrification. Therefore accumulation of concentrations of ammonia in soil and groundwater will not be expected.
PEC in air: annual average (mg/M ³)	19

The following RCR values were obtained:

Compartments	PEC	PNEC	PEC/PNEC	Discussion
Freshwater (Tier 2)	$\begin{array}{c} 1.30 \times 10^{-3} \\ \text{mg/L} \\ (\text{Total} \\ \text{Ammonia}) \\ 4.97 \times 10^{-5} \\ \text{mg/L} \\ (\text{Free} \\ \text{Ammonia}) \end{array}$	0.0011 mg/l (Free Ammonia)	0.045	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
Marine water (Tier 2)	3.14 x 10 ⁻⁴ mg/L (Total Ammonia) 1.20x 10 ⁻⁵ mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	0.011	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)

The following values were obtained using ECETOC TRA for worker exposure

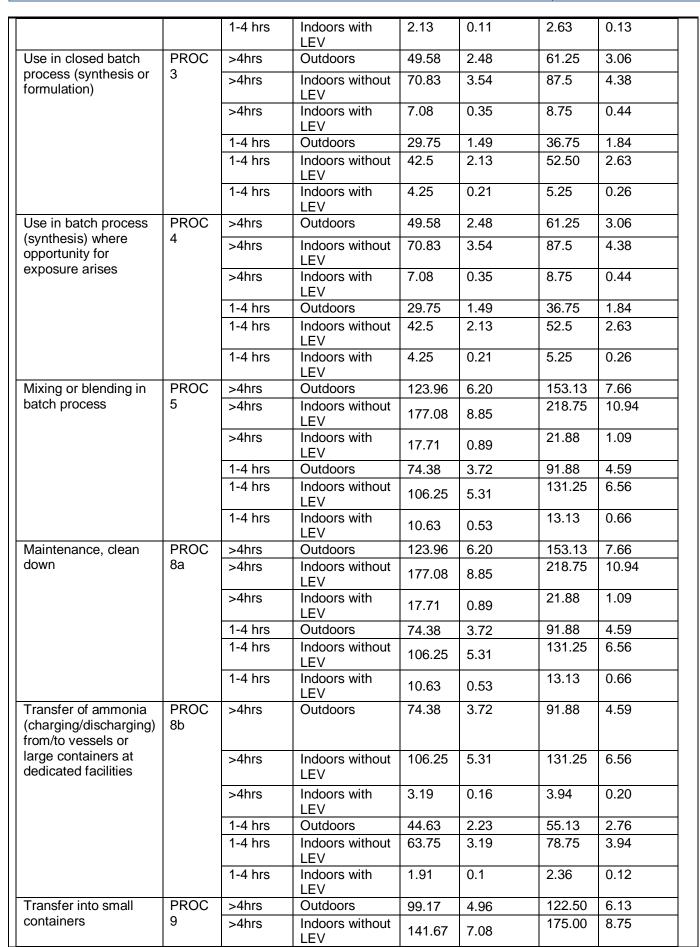
Dermal exposures predicted using the ECETOC TRA model

Description of activity	PROC	Exposure ass	umptions	Estimated Exposure mg/kg bw/d		
		Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	
Use in a closed process, no likelihood of exposure: storage (closed or bulk container)	PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	
Use in a closed, continuous process	PROC 2	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	1.37	0.14	

PiaNOx[®] - A

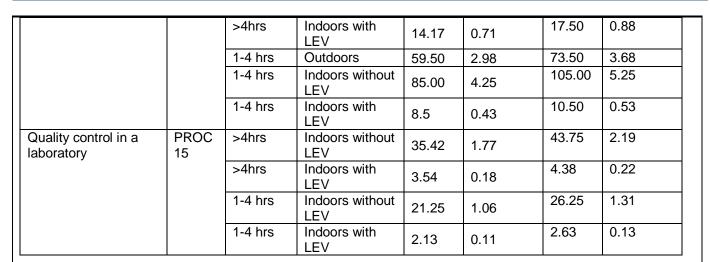
Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024


with occasional controlled exposure (e.g. sampling)			Indoors with LEV	0.14	0.01
Use in closed batch process (synthesis or	PROC 3	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
formulation)		1-4 hrs or >4 hrs	Indoors with LEV	0.03	<0.01
Use in batch process (synthesis) where	PROC 4	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
opportunity for exposure arises		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Mixing or blending in batch process	PROC 5	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
		1-4 hrs or >4 hrs	Indoors with LEV	0.07	0.01
Transfer into small containers	PROC 9	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Transfer (charging/discharging)	PROC 8a	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
from or to vessels or large containers at non-dedicated facilities			Indoors with LEV	0.14	0.01
Transfer (charging/discharging) from or to vessels or	PROC 8b	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
large containers at dedicated facilities			Indoors with LEV	0.69	0.07
Laboratory use : Quality control in a	PROC 15	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
laboratory		1-4 hrs or >4 hrs	Indoors with LEV	0.03	<0.01

Inhalation exposure concentrations predicted using the ECETOC TRA model

		-		Anhydr ammon		Aqueou (5-25%	ıs ammonia w/w)
Description of activity	PROC	Exposure	assumptions	Esti	mated Exposi mg	ure Conc /m3	entration
		Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE (95% reduction)
Used in a closed process, no likelihood	PROC 1	1-4 hrs or >4 hrs	Outdoors	0.00	NA	0.01	NA
of exposure: Storage (closed bulk or container)		1-4 hrs or >4 hrs	Indoors without LEV	0.01	NA	0.01	NA
Use in a closed,	PROC	>4hrs	Outdoors	24.79	1.24	30.63	1.53
continuous process with occasional	2	>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
controlled exposure (e.g. sampling)		>4hrs	Indoors with LEV	3.53	0.18	4.38	0.22
	1-4 hrs		Outdoors	14.88	0.74	18.38	0.92
		1-4 hrs	Indoors without LEV	22.25	1.06	26.25	1.31


Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Revision Date: 17.04.2024 Print Date: 17.04.2024

The following RCR values were obtained using ECETOC TRA and the relevant DNELs

Quantitative risk characterisation of dermal exposures to anhydrous or aqueous (in preparations of 5- 25 % w/w) ammonia for industrial workers (ES 2 – formulation and distribution)

PROC code	Exposure	e assumptions	ES 2- expo concentra mg/kg bw/	tions (EC)	Acute / long term systemic effects DNEL = 6.8 mg/kg bw/d Risk characterisation		
	Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	ratio Worn No gloves	Gloves worn (90% reduction)	
PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01	
PROC 2	1-4 hrs	Outdoors /Indoors without LEV	1.37	0.14	0.20	0.02	
	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01	
PROC 3	1-4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01	
	or >4 hrs	Indoors with LEV	0.03	<0.01	0.05	<0.01	
PROC 4	1-4 hrs or >4	Outdoors /Indoors without LEV	6.86	0.69	1.01	0.10	
	hrs	Indoors with LEV	0.69	0.07	0.10	0.01	
PROC 5	1-4 hrs	Outdoors /Indoors without LEV	13.71	1.37	2.02	0.20	
	or >4 hrs	Indoors with LEV	0.07	0.01	0.01	<0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20	
8a	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10	
8b	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01	
PROC 9	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10	
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01	

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

PROC	1-4 hrs	Outdoors / Indoors without LEV	0.34	0.03	0.05	0.01
15	or >4 hrs	Indoors with LEV	0.03	<0.01	0.01	<0.01

Quantitative risk characterisation of inhalation exposure concentrations of anhydrous ammonia for industrial workers (ES 3 – formulation and distribution)

PROC code	Expos	ure assumptions	concen	ES 2- exposure concentrations (EC) mg/m ³		Acute / long- term systemic effects DNEL = 47.6 mg/m3		local 5 = 36 3	Long-term local effects DNEL = 14 mg/m3	
	Duration	Use of ventilation	No RPE	RPE -95% reduction	R(No RPE	R 95%	R(No RPE	RPE 95% reduction	RC No RPE	RPE -95% reduction
PROC 1	1-4	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA
11001	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC 2	>4hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09
		Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4	Outdoors	14.88	0.74	0.31	0.02	0.41	0.02	1.06	0.05
	hrs	Indoors without LEV	22.25	1.06	0.47	0.02	0.59	0.03	1.52 0.	0.08
		Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01
PROC 3	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18
		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
	hrs	Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC 4	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18
		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 brs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
	hrs	Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC 5	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

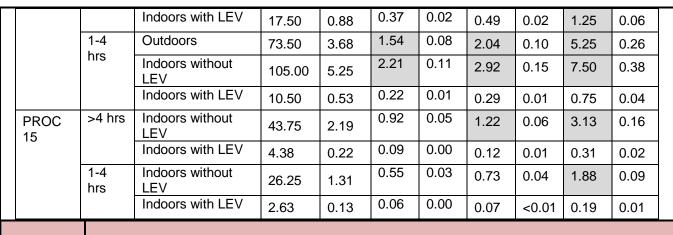
		Indoors with LEV					0.30	0.01	0.76	0.04
			10.63	0.53			0.50	0.01	0.70	0.04
					0.22	0.01				
PROC	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
8a		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
8b	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	3.19	0.16	0.07	0.00	0.09	<0.01	0.23	0.01
	1-4	Outdoors	44.63	2.23	0.94	0.05	1.24	0.06	3.19	0.16
	hrs	Indoors without LEV	63.75	3.19	1.34	0.07	1.77	0.09	4.55	0.23
		Indoors with LEV	1.91	0.10	0.04	0.00	0.05	<0.01	0.14	0.01
PROC 9	>4	Outdoors	99.17	4.96	2.08	0.10	2.75	0.14	7.08	0.35
	hrs	Indoors without LEV	141.67	7.08	2.98	0.15	3.94	0.20	10.12	0.51
		Indoors with LEV	14.17	0.71	0.30	0.01	0.39	0.02	1.01	0.05
	1-4	Outdoors	59.50	2.98	1.25	0.06	1.65	0.08	4.25	0.21
	hrs	Indoors without LEV	85.00	4.25	1.79	0.09	2.36	0.12	6.07	0.30
		Indoors with LEV	8.5	0.43	0.18	0.01	0.24	0.01	0.61	0.03
PROC	>4	Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
15	hrs	Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4	Indoors without LEV	21.25	1.06	0.45	0.02	0.59	0.03	1.52	0.08
	hrs	Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01

Quantitative risk characterisation of inhalation exposure concentrations of aqueous ammonia (in preparations of 5-25 % w/w) in workers (ES 2 – formulation and distribution)

PROC code	Exposu	re assumptions	ES 2- exposur concent (EC) mg	rations	Acute term systen effects DNEL mg/m3	nic 5 = 47.6	Acute local e DNEL mg/m3	ffects = 36	Long-t local e DNEL mg/m3	effects = 14
					R	CR	RC	CR	RC	CR
	Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE - 95% reduction	No RPE	RPE -95% reduction	No RPE	RPE -95% reduction
PROC 1	1-4 hrs or >4 hrs	Outdoors Indoors without LEV	0.0001 0.01	NA NA	<0.01 <0.01	NA NA	<0.01 <0.01	NA NA	<0.01 <0.01	NA NA
PROC 2	>4hrs	Outdoors	30.63	1.53	0.64	0.03	0.85	0.04	2.19	0.11
		Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024


ERITZ

						-		1		
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02
	1-4 hrs	Outdoors	18.38	0.92	0.39	0.02	0.51	0.03	1.31	0.07
		Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01
PROC 3	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4 hrs	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	1115	Indoors without LEV	52.50	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC 4	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4 hrs	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	1115	Indoors without LEV	52.5	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC 5	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	1110	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 8a	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
oa		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
		Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
	>4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
8b		Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	3.94	0.20	0.08	0.00	0.11	0.01	0.28	0.01
	1-4 hrs	Outdoors	55.13	2.76	1.16	0.06	1.53	0.08	3.94	0.20
		Indoors without LEV	78.75	3.94	1.65	0.08	2.19	0.11	5.63	0.28
		Indoors with LEV	2.36	0.12	0.05	0.00	0.07	<0.01	0.17	0.01
PROC 9	>4hrs	Outdoors	122.50	6.13	2.57	0.13	3.40	0.17	8.75	0.44
		Indoors without	1	1	3.68	0.18	4.86	0.24	12.50	0.63

PiaNOx® - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

4

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environmental releases:

In order to work within the boundaries of the ES the following conditions should be met:

- Local emission to air less than 21.1 mg/M³
- When the on-site WWTP is used the WWTP sludge should not be spread to soil
- Emissions from the waste-water stream should be completely removed
- Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the formulation process.
- Measured emissions should be ensured to lead to concentrations in the environment which are less than the relevant PNEC
- Emissions to wastewater from laboratory use should not be discharged to the municipal STP

Worker exposure:

In order to work within the boundaries of the ES the following conditions should be met:

- LEV should be in place in indoor facilities at times when natural ventilation is not sufficient.
- Where the potential for dermal exposure exists, gloves with a minimum efficiency of 90% and RPE with 95% efficiency should be worn.
- Health monitoring should be conducted regularly to ascertain the potential levels of exposure.
- Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise.
- All technological devices should have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.
- Workers should be fully trained.
- Any measured worker exposure levels should be confirmed to be below the relevant DNEL as presented in section 3 above.

Downstream user exposure scenario for Ammonia

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~l	Vo.~~1907/2006(REACH)
-------------------	------------------------------------	-----------------------

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Exposure Scenario 3: Industrial use of Anhydrous Ammonia as an Intermediate

1	Exposure Scenario 3								
Industrial uses of anhydrous ammonia as an intermediate									
	Processes Covered: Environmental Releases								
ERC6a: Indust Worker Proce	rial use of intermediates sses								
PROC02: Use PROC03: Use	in closed process, no likelihood of exposure. in closed, continuous process with occasional controlled exposure. in closed batch processes in batch and other processes where the potential for exposure occurs								
PROC05: Mixii	ng and blending ansfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-								
PROC08b: Traded facility	ansfer of substance or preparation (charging/discharging) from/to vessels/large containers at ities.								
PROC09: Tran PROC15: Labo	sfer of formulations to small containers. bratory use								
dyes, pharmac Ammonia is us acid (HNO ₃) w used as a vasc hydrogen carb (hydrocyanic a Ammonia is us in the synthesi manufacture of Ammonia is us bacteria that re (e.g. B vitamins	ed by the chemicals industry to manufacture a range other substances including: nitric acid, alkalis, euticals, cosmetics, vitamins, synthetic textile fibres and plastics. ed as an intermediate in the synthesis of a number of chemicals. It is used in the manufacture of nitric hich is used in making explosives such as TNT (2,4,6-trinitrotoluene); nitro-glycerine (which is also odilator) and PETN (pentaerythritol nitrate). Ammonia is also used in the synthesis of alkakis: sodium onate (sodium bicarbonate; NaHCO ₃), soda ash (sodium carbonate, Na ₂ CO ₃), hydrogen cyanide cid; HCN) and hydrazine (N ₂ H ₄) used in rocket propulsion systems. ed to manufacture explosives such as ammonium nitrate (NH ₄ NO ₃). It is also used as an intermediate s of dyes, and synthetic 'man-made' fibres such as nylon, rayon and acrylics. It is also used in the f plastics such as phenolics and polyurethanes. ed in the manufacture of drugs such as sulphonamide which inhibit the growth and multiplication of equire <i>p</i> -aminobenzoic acid (PABA) and for the biosynthesis of folic acids, antimalarials and vitamins s: nicotinamide and thiamine).								
Contributing Er as an intermed	nvironmental Scenario: Environmental exposure arising due to Industrial uses of anhydrous ammonia liate.								
of exposure, da day use in bate	orker Scenarios: Worker exposure arising due to day to day use in closed processes with no likelihood ay to day use in closed continuous processes with occasional exposure (such as sampling), day to ch or other processes with some potential for exposure (such as sampling, cleaning, maintenance), nding, transfer to small containers, transfer of substance to and from large vessels and containers use.								

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Version: 6.0 (N	MSDS_DE/EN) Print Date: 17.04.2024
2.1	Contributing scenario 1 controlling environmental exposure for ES 3
Environmental	exposure arising due to industrial uses of anhydrous ammonia as an intermediate.
as an intermedi If emission to v order to remove In reality remove nitrate followed employed comp	scribes the environmental releases that may occur during the industrial uses of anhydrous ammoni- iate. These releases may occur due to emission to wastewater or through emission to the atmosphere wastewater occurs on-site treatment in an industrial waste water treatment plant will be required in e downstream emissions to the environment. val of ammonia in sewage treatment plants is highly efficient being removed first by nitrification to by denitrification resulting in the release of nitrogen gas. It is considered that if these processes are plete removal from the wastewater stream will occur. Emissions to the atmosphere should not exceed of 30.5 mg/m ³ .
Product charac	teristics
The vapour presoluble in water flammable. Fo biodegradable.	monia is a colourless gas at room temperature and pressure with a typical purity of around 99.9% essure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is ver r: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to bormulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily
Amounts used	
tonnes consum REACH numbe	may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 millio ned per year in the European Union. According to the guidance for this tonnage band, the defauer of emission days per year are 330.
	I duration of use
exposure to an	m standard shifts of 8 hours per day and have standard working years of 220 days per year. Potentia monia during industrial use is generally a short duration task, with limited potential for exposure. factors influenced by risk management
Flow rate of red	ceiving water at least 18,000 m ³ per day. Dilution of STP emissions at least 10 fold.
Other operation	nal conditions affecting environmental exposure
Closed systems	ally trained in safe use and the use of appropriate systems in order to prevent accidental release s are employed in order to prevent un-intended emissions. ditions and measures at process level (source) to prevent release
	ransfer pipelines should be closed sealed. On site WWTPs should be available at industrial sites i
	ate emissions to the environment via contaminated wastewater.
Technical onsit	te conditions and measures to reduce or limit discharges, air emissions and releases to soil
processes or fr equivalent to a solid waste will	hould be emitted to the on-site WWTP for specialized removal. Emissions to air from the industria rom the onsite WWTP should not exceed a concentration of 30.5 mg/m ³ of air. This is approximatel total loss to air of 106,000 kg/day. Sludge from the on-site WWTP should not be spread to soil. An I be sent as waste for landfill, incineration or recycling.
Organizational	measures to prevent/limit releases from site
concentrations	Ily trained in order to prevent accidental release and exposures may be monitored to ensure airborn are within acceptable levels.
Conditions and	I measures related to municipal STP
Direct emission	ns to the municipal STP should not be made.
Conditions and	I measures related to external treatment of waste for disposal
process. Sludg	be sent to external waste treatment, on-site effluent treatment or recycled back into the industria ge from the onsite WWTP should be recycled, incinerated or sent to landfill.
	I measures related to external recovery of waste
There is no envair are not colle	visaged external recovery of waste. Waste sludge is reduced and then incinerated and emissions t ected.
2.2	
L.L	

SAFETY DATA SHEE1	according~~to~~Regulation~~(EC)~~No.~~190	7/2006(REACH)
-------------------	---	---------------

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Contributing scenario 2 controlling worker exposure day to day use in closed processes with no likelihood of exposure.

Worker exposure arising due to day to day use in closed processes with no likelihood of exposure during the industrial use processes.

Section 2.2 describes the potential exposure to workers during the industrial use of ammonia as an intermediate from operation of closed systems. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 million tonnes consumed per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial use is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating industrial use equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
-------------------	--

SKY. PIESTERITZ

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Versien: C.O. (M		Drint Date: 17.04.202	
Version: 6.0 (MS	DS_DE/EN)	Print Date: 17.04.2024	4
2.3		controlling worker exposure due to day ith occasional exposure (such as sampling	
Worker exposure sampling).	e arising due to day to day u	se in closed continuous processes with occas	sional exposure (such as
Section 2.3 desc the operation of and maintenance its associated ma	closed systems with the pot e. The potential exposure a achinery and during routine	to workers during the industrial use of preparential for occasional exposure during tasks sur- rises from the operation of industrial intermed campling, cleaning and occasional maintenan	ch as sampling, cleaning diate use equipment and ce.
Formulated solution	ions are stored and transp iners (e.g. tanks and tank tr	place to limit the risk of exposure to workers orted as a liquid under pressure by rail, road icks approved for transporting ammonia).	
Product characte	ristics		
The vapour pressoluble in water: flammable. Forrbiodegradable.	sure of ammonia, anhydro reported water solubility val	bom temperature and pressure with a typical is is reported to be 8611 hPa at 20 °C. Anh les are 482000-531000 mg/L. Anhydrous amr has a vapour pressure of 287 hPa and	ydrous ammonia is very monia is considered to be
Amounts used			
tonnes consume		dual site tonnage of 800,000 tonnes per annu Union. According to the guidance for this to re 330.	
Frequency and c	uration of use exposure		
exposure to amn		er day and have standard working years of 220 generally a short duration task, with limited p nent	
Area of skin cont		r conditions of use: 480cm ² (ECETOC default	t).
Other given oper	ational conditions affecting	vorker exposure	
		se of appropriate PPE in order to prevent acci medical surveillance programs.	dental release. Frequent
Technical conditi	ons and measures at proce	s level (source) to prevent release	
ventilation is not		osed and sealed. During indoor processes o place. For outdoor processes LEV is not get	
Technical conditi	ons to control dispersion fro	n source towards worker	
should be closed	and sealed systems.	ions when natural ventilation is not sufficient	. Reactors and pipelines
Organizational m	easures to prevent/limit rele	ase	
appropriate PPE effects is conduc	in order to prevent accide ted by medical surveillance		
Conditions and n	neasures related to persona	protection, hygiene and health.	
tanks etc). All op sampling is carr emissions may o technological de	perations are performed in a ed out with a closed samp occur. Ammonia is stored in	onia when operating industrial use equipment closed system. Pipelines and vessels are s le loop. Extract ventilation is provided at op closed containers and tanks and transferred certification, and are regularly controlled and	ealed and insulated and benings and points were d under containment. All
Good occupation exposure. Worke Where good na ventilation (LEV)	hal hygiene and exposure c ers are well-trained in these tural ventilation is found t	ontrol measures are implemented to minimise procedures and the use of appropriate protect be inadequate, mechanical (general) ven ctive clothing (e.g. face/eye/ear protection, h contact may arise.	tive equipment. tilation or local exhaust

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.4

Contributing scenario 4 controlling worker exposure for day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance)

Worker exposure arising due to day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance).

Section 2.4 describes the potential exposure to workers during day to day use of industrial machinery, pipelines and storage vessels. Potential exposure may occur during the day to day use however it is more likely to occur during tasks associated with the batch or other processes themselves such as sampling of produced intermediates, cleaning and routine maintenance.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Solutions of ammonia are stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

This contributing considers the potential exposures from batch and other processes (such as one off exposures) and though there is some potential for exposure generally systems are in place to control losses or unintended emissions of ammonia at the industrial facility.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 million tonnes consumed per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial use during batch and other processes is generally a short duration task, with limited potential for exposure occurring in reality.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers are fully trained in safe use of the machinery associated with industrial intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating industrial use equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

25			
	2	-	
	1		

Contributing scenario 5 controlling worker exposure for mixing and blending

Worker exposure arising due to mixing and blending in batch processes during use as an intermediate

Section 2.5 describes the potential exposure to workers during mixing and blending of ammonia formulations. Potential exposure may occur during the day to day use of machinery and technologies associated with the blending and mixing process as part of the overall industrial use of ammonia as an intermediate.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Stock ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

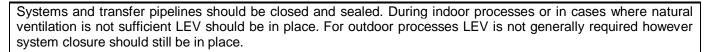
Industrial sites may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 million tonnes consumed per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial use is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).


Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating industrial use equipment (e.g. valves, pumps or blending tanks etc). All operations are performed in a closed system. Pipelines, blending apparatuses and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.6

Contributing scenario 6 controlling worker exposure for transfer to small containers

Worker exposure arising due to transfer to small containers in a dedicated filling line.

Section 2.6 describes the potential exposure to workers during the filling of small containers in dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers themselves.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the small sized containers.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 million tonnes consumed per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial use is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating industrial use equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.7 Contributing scenario 7 controlling worker exposure for transfer to and from large containers and vessels

Worker exposure arising due transfer of ammonia to and from large containers and vessels

Section 2.7 describes the potential exposure to workers during the filling and loading to/from large vessels and containers in dedicated and non-dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers and vessels themselves.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the small sized containers.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 800,000 tonnes per annum, with up to 3.8 million tonnes consumed per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial use is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia when operating industrial use equipment (e.g. valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emissions may occur. Ammonia is stored in closed containers and tanks and transferred under containment. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.8 Contributing scenario 8 controlling worker exposure for laboratory use

Worker exposure arising due to laboratory use of ammonia (small scale non-industrial laboratories).

Section 2.8 describes the potential exposure to workers during laboratory use of ammonia as an intermediate especially during the filling and loading of small flasks and vessels using non-dedicated filling lines or small scale transfer methods. Potential exposure is most likely to occur during tasks associated with the actual transfer or mixing of the ammonia solutions.

For dedicated small scale laboratories appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During laboratory use of ammonia solutions of aqueous ammonia in the 5 – 25% concentrations range are most liklety to be encountered. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario.

Amounts used

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Amounts use in a non-industrial setting are likely to be small with less than 1 litre or 1 kilogram present on site. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330 however actual emission of ammonia is likely to be much less frequent in practice.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Again use of ammonia is not likely to be this frequent in practice.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the laboratory use of ammonia as an intermediate indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

During laboratory use LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases).

All technological devices should have a proper quality certification, and should be regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not considered sufficient or in enclosed areas.

Organizational measures to prevent/limit release

Laboratory workers are fully trained in safe use of chemicals in general and in the use of appropriate PPE in order to prevent accidental release or exposure.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia during laboratory use when filling containers and vessels or during transfer. Extract ventilation is provided at openings and points were emissions may occur.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in these procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

3

Exposure estimation and reference to its source

The assessment of worker exposure to anhydrous and aqueous forms of ammonia used as an intermediate in chemical synthesis (ES 3) was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), maintenance and clean-down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9) and analysis of samples (PROC 15). A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes.

Exposure to workers was assessed taking into account different operational conditions that may be associated with the use of ammonia as an intermediate in chemical synthesis and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

affording 90% protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physicalchemical properties of a substance into account. The same dermal exposure where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight (35 g.mol⁻¹ and 17 g.mol⁻¹ for aqueous and anhydrous forms respectively and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6 x 10⁵ Pa at 20°C, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4 x10⁴ Pa at 20°C. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.

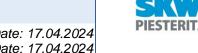
For environmental emissions complete removal in the on-site WWTP was considered during derivation of the values below. Emission values and environmental concentrations were calculated using the EUSES 2.1 model. **Information for contributing scenario 1 (environmental exposure):**

PEC	Values
PEC in sewage effluent	0 (due to complete removal)
PEC in aquatic compartment (mg/L): Freshwater	2.19 x 10 ⁻³
Marine Water	5.37 x 10 ⁻⁴
PEC in sediments (mg/kg): Freshwater sediments	2.37 x 10 ⁻³
Marine water sediments	5.82 x 10 ⁻⁴
PEC in soil and groundwater:	Upon contact with soil, ammonia will be rapidly converted by a variety of bacteria, actinomycetes and fungi to ammonium (NH ₄ ⁺) by the process of ammonification or mineralization. Ammonium is then rapidly converted to nitrate. Nitrate is subsequently taken up and utilised by plants or returned to the atmosphere following denitrification; the metabolic reduction of nitrate into nitrogen or nitrous oxide (N2O) gas. The most likely fate of ammonium ions in soils is conversion to nitrates by nitrification. Therefore accumulation of concentrations of ammonia in soil and groundwater will not be expected.
PEC in air: annual average (mg/M ³)	30.5

The following RCR values were obtained:

Compartments	PEC	PNEC	PEC/PNEC	Discussion
ERC 6a Freshwater (Tier 2)	2.19×10^{-3} mg/L (Total Ammonia) 8.37×10^{-5} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	0.076	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA- 600/3-79-091)

Revision Date: 17.04.2024 Print Date: 17.04.2024

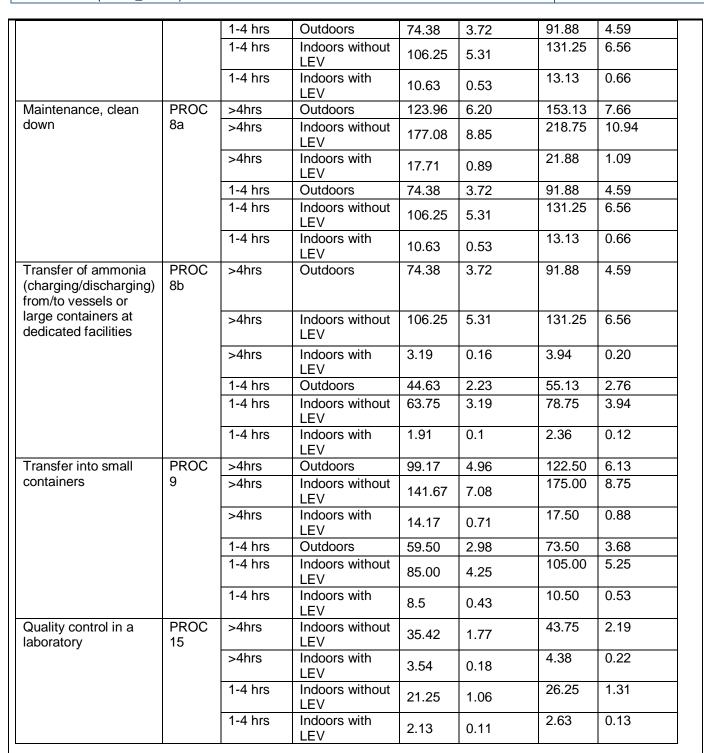

ERC 6a Marine water (Tier 2)	5.37×10^{-4} mg/L (Total Ammonia) 2.05×10^{-5} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	0.019	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA- 600/3-79-091)
---------------------------------	---	-------------------------------------	-------	---

The following values were obtained using ECETOC TRA for worker exposure

Dermal exposures predicted using the ECETOC TRA model

Description of activity	PROC			Estimated Exposure mg/kg bw/d	
		Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)
Use in a closed process, no likelihood of exposure: storage (closed or bulk container)	PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03
Use in a closed, continuous process with occasional	PROC 2	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	1.37	0.14
controlled exposure (e.g. sampling)			Indoors with LEV	0.14	0.01
Use in closed batch process (synthesis or	PROC 3	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
formulation)		1-4 hrs or >4 Indoors with LEV hrs		0.03	<0.01
Use in batch process (synthesis) where	PROC 4	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
opportunity for exposure arises		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Mixing or blending in batch process	PROC 5	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
		1-4 hrs or >4 hrs	Indoors with LEV	0.07	0.01
Transfer into small containers	PROC 9	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Transfer (charging/discharging)	PROC 8a	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
from or to vessels or large containers at non-dedicated facilities			Indoors with LEV	0.14	0.01
Transfer (charging/discharging) from or to vessels or	PROC 8b	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
large containers at dedicated facilities			Indoors with LEV	0.69	0.07

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024



Laboratory use : Quality control in a	PROC 15	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
laboratory		1-4 hrs or >4 hrs	Indoors with LEV	0.03	<0.01

Inhalation exposure concentrations predicted using the ECETOC TRA model Anhydrous Aqueous ammonia ammonia (5-25% w/w) **Description of** PROC Exposure assumptions **Estimated Exposure Concentration** activity mg/m3 Use of **RPE (95% RPE (95%** Duration No No RPE RPE ventilation reduction) reduction) PROC 1-4 hrs or Outdoors 0.00 NA 0.01 NA Used in a closed process, no likelihood 1 >4 hrs of exposure: Storage 1-4 hrs or Indoors without 0.01 NA 0.01 NA (closed bulk or >4 hrs LEV container) Use in a closed, PROC Outdoors 24.79 1.24 30.63 1.53 >4hrs continuous process 2 with occasional >4hrs Indoors without 35.42 1.77 43.75 2.19 controlled exposure LEV (e.g. sampling) >4hrs Indoors with 3.53 0.18 4.38 0.22 LEV Outdoors 14.88 0.74 18.38 0.92 1-4 hrs 1-4 hrs Indoors without 22.25 1.06 26.25 1.31 LEV 1-4 hrs Indoors with 2.13 0.11 2.63 0.13 LEV Use in closed batch PROC >4hrs Outdoors 49.58 2.48 61.25 3.06 process (synthesis or 3 formulation) >4hrs Indoors without 70.83 3.54 87.5 4.38 LEV 7.08 0.35 8.75 0.44 >4hrs Indoors with LEV 29.75 1.49 36.75 1.84 1-4 hrs Outdoors Indoors without 42.5 2.13 52.50 2.63 1-4 hrs LEV 1-4 hrs Indoors with 4.25 0.21 5.25 0.26 LEV Use in batch process PROC >4hrs Outdoors 49.58 2.48 61.25 3.06 (synthesis) where 4 opportunity for >4hrs Indoors without 70.83 3.54 87.5 4.38 exposure arises LEV Indoors with 7.08 0.35 8.75 0.44 >4hrs LEV 1-4 hrs Outdoors 29.75 1.49 36.75 1.84 1-4 hrs Indoors without 42.5 2.13 52.5 2.63 LEV 1-4 hrs Indoors with 4.25 0.21 5.25 0.26 LEV Mixing or blending in PROC >4hrs Outdoors 6.20 153.13 7.66 123.96 batch process 5 >4hrs Indoors without 218.75 10.94 177.08 8.85 LEV >4hrs Indoors with 21.88 1.09 17.71 0.89 LEV

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

The following RCR values were obtained using ECETOC TRA and the relevant DNELs

Quantitative risk characterisation of dermal exposures to anhydrous or aqueous (in preparations of 5- 25 % w/w) ammonia for industrial workers (ES 3 – Use as an intermediate)

PROC code	Exposure assumptions	ES 3- exposure concentrations (EC) mg/kg bw/d	Acute / long term systemic effects DNEL = 6.8 mg/kg bw/d
			Risk characterisation ratio

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

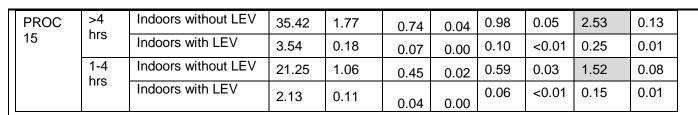
	Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	No gloves worn	Gloves worn (90% reduction)
PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01
PROC 2	1-4 hrs	Outdoors /Indoors without LEV	1.37	0.14	0.20	0.02
	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC 3	1-4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01
	or >4 hrs	Indoors with LEV	0.03	<0.01	0.01	<0.01
PROC 4	1-4 hrs	Outdoors /Indoors without LEV	6.86	0.69	1.01	0.10
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC 5	1-4 hrs	Outdoors /Indoors without LEV	13.71	1.37	2.02	0.20
	or >4 hrs	Indoors with LEV	0.07	0.01	0.01	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20
8a	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10
8b	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC 9	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	0.34	0.03	0.05	0.01
15	or >4 hrs	Indoors with LEV	0.03	<0.01	0.01	<0.01

Quantitative risk characterisation of inhalation exposure concentrations of anhydrous ammonia for industrial workers (ES 3 – industrial use)

PROC code	Exposu	re assumptions		xposure trations g/m ³	Acute term system effects DNEL mg/m3	s = 47.6	Acute- effects DNEL mg/m3	s = 36	Long-term local effects DNEL = 14 mg/m3		
					R	CR	R	CR	DNEL = 14		
	Duration	Use of ventilation	No RPE	RPE -95% reduction	No RPE	RPE - 95%	No RPE	RPE 95% reduction			
PROC 1	1-4 hrs	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA	
	or >4 hrs		Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC 2	>4hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09	
		Indoors without 35.42 LEV		1.77	0.74	0.04	0.98	0.05	2.53	0.13	
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01	
	1-4 hrs	Outdoors	14.88	0.74	0.31	0.02	0.41	0.02	1.06	0.05	

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)


Revision Date: 17.04.2024 Print Date: 17.04.2024

RITZ

		Indoors without	22.25	1.06			0.59	0.03	1.52	0.08
		LEV Indoors with LEV	2.13	0.11	0.47	0.02	0.00	0.04	0.45	0.04
	>4hrs	Outdoors	49.58	2.48	0.04	0.00	0.06	<0.01	0.15	0.01
PROC 3	241115	Indoors without	70.83	3.54	1.04	0.05	1.38	0.07	3.54	0.18
		LEV	70.05		1.49	0.07	1.97	0.10	5.06	0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 hrs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
		Indoors without	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC 4	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18
		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 hrs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
		Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC 5	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
		Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
8a		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
8b	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	3.19	0.16	0.07	0.00	0.09	<0.01	0.23	0.01
	1-4	Outdoors	44.63	2.23	0.94	0.05	1.24	0.06	3.19	0.16
	hrs	Indoors without LEV	63.75	3.19	1.34	0.07	1.77	0.09	4.55	0.23
		Indoors with LEV	1.91	0.10	0.04	0.00	0.05	<0.01	0.14	0.01
	>4	Outdoors	99.17	4.96	2.08	0.10	2.75	0.14	7.08	0.35
PROC 9	la r -		444.07	7.08	2.98	0.15	3.94	0.20	10.12	0.51
PROC 9	hrs	Indoors without LEV	141.67	1.00	2.00					
PROC 9	hrs	Indoors without LEV Indoors with LEV	141.67	0.71		0.01	0.39	0.02	1.01	0.05
PROC 9	1-4			ł	0.30		0.39 1.65	0.02 0.08	1.01 4.25	0.05 0.21
PROC 9		Indoors with LEV	14.17	0.71		0.01				

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Quantitative risk characterisation of inhalation exposure concentrations of aqueous ammonia (in preparations of 5-25 % w/w) in workers (ES 3 – industrial use)

PROC code		-25 % w/w) in worke	assumptions ES 3- exposure concentrations (EC) mg/m ³ Acute /long- term systemic effects DNEL = 47.6 mg/m3		/long- nic s = 47.6	Acute – local effects DNEL = 36 mg/m3		Long-term local effects DNEL = 14 mg/m3		
					R	CR	R	CR	R	CR
	Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE - 95% reduction	No RPE	RPE -95% reduction	No RPE	RPE -95% reduction
PROC 1	1-4	Outdoors	0.0001	NA	<0.01	NA	<0.01	NA	<0.01	NA
	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC 2	>4hrs	Outdoors	30.63	1.53	0.64	0.03	0.85	0.04	2.19	0.11
		Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02
	1-4 hrs	Outdoors	18.38	0.92	0.39	0.02	0.51	0.03	1.31	0.07
		Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01
PROC 3	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.50	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC 4	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4 bro	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.5	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC 5	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 8a	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 8b	>4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
		Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	3.94	0.20	0.08	0.00	0.11	0.01	0.28	0.01
	1-4	Outdoors	55.13	2.76	1.16	0.06	1.53	0.08	3.94	0.20
	hrs	Indoors without LEV	78.75	3.94	1.65	0.08	2.19	0.11	5.63	0.28
		Indoors with LEV	2.36	0.12	0.05	0.00	0.07	<0.01	0.17	0.01
PROC 9	>4hrs	Outdoors	122.50	6.13	2.57	0.13	3.40	0.17	8.75	0.44
		Indoors without LEV	175.00	8.75	3.68	0.18	4.86	0.24	12.50	0.63
		Indoors with LEV	17.50	0.88	0.37	0.02	0.49	0.02	1.25	0.06
	1-4	Outdoors	73.50	3.68	1.54	0.08	2.04	0.10	5.25	0.26
	hrs	Indoors without LEV	105.00	5.25	2.21	0.11	2.92	0.15	7.50	0.38
		Indoors with LEV	10.50	0.53	0.22	0.01	0.29	0.01	0.75	0.04
PROC 15	>4 hrs	Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02
	1-4 hrs	Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01

Environmental releases:

In order to work within the boundaries of the ES the following conditions should be met:

- Local emission to air less than 30.5 mg/M³
- When the on-site WWTP is used the WWTP sludge should not be spread to soil
- Emissions from the waste-water stream should be completely removed
- Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the industrial process.
- Measured emissions should be ensured to lead to concentrations in the environment which are less than the relevant PNEC

SAFETY DATA SHEET according~~to	~~Regulation~~(EC)~~No.~~1907/2006(REACH)
PiaNOx [®] - A	
Islamta a day 00.40	Devision Deter 47.04.0004

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

• Emissions to wastewater from laboratory use should not be to the municipal STP

Worker exposure:

In order to work within the boundaries of the ES the following conditions should be met:

- LEV should be in place in indoor facilities at times when natural ventilation is not sufficient.
- Where the potential for dermal exposure exists, gloves with a minimum efficiency of 90% and RPE with 95% efficiency should be worn.
- Health monitoring should be conducted regularly to ascertain the potential levels of exposure.
- Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise.
- All technological devices should have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.
- Workers should be fully trained.
- Any measured worker exposure levels should be confirmed to be below the relevant DNEL as presented in section 3 above.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Downstream User Exposure Scenario for Ammonia

Exposure Scenario 4: Industrial End-use of anhydrous and aqueous Ammonia as processing aids, non-processing aids and auxiliary agents

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024 ERITZ

		Тур	oe of u	se		
Industrial end-use	Processing aid	Non-processing aid	Reactive processing aid	Auxiliary agent	Use in closed svstem	Description of use
Use as developing agent in photochemical processes	Х					Ammonia is used as a developing agent in photochemical processes such as white printing, blue printing and in the diazo duplication press.
Use of refrigerant systems		X			X	Anhydrous liquid ammonia is used as a refrigerant in household, commercial and industrial systems due to its high heat of vaporisation and relative ease of liquefaction.
Insulation products		Х				•
Inks and toners	х	Х				Ammonia vapours are used as a reagent in treating writing or ink marks
Coatings, thinners, paint removers	Х	Х				
Processing aid in chemicals industry			Х			
Use as an extraction agent			Х			Ammonia is used as an extraction agent in the mining industry to extract metals like copper, nickel and molybdenum from their ores.
Treatment of gas (NOx and SOx reduction)			Х		Х	Ammonia is used in stack emission control systems to neutralise sulphur oxides from combustion of sulphur-containing fuels, as a method of NOx control in both catalytic and non- catalytic applications and to enhance the efficiency of electrostatic precipitators for particulate control.
Processing aid in nutrition			Х		Х	The food and beverage industry use ammonia as a source of nitrogen required for yeast and micro- organism
Use as neutralising agent			Х		Х	Ammonia is used by the petrochemical industry in neutralizing the acid constituents of crude oil and in the protection of equipment from corrosion
Textile dyes			Х			
Treatment of water	Х		X			Aqueous ammonia is used in water and waste- water treatment areas to control pH, to regenerate weak anion exchange resins and as an oxygen scavenger in boiled water treatment. In water disinfection, aqueous ammonia is added to water containing free chlorine to produce a chloramines disinfectant.
Use as washing and cleaning products	X		x			Weak ammonia solutions are used extensively within industry, by professionals and consumers as commercial and household cleaners and detergents cleaning products. Commercial ammonia cleaning products contain up to 30% ammonia whereas household products contain 5- 10% ammonia

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Treatment of textiles		Х	Х			Liquid ammonia is used to increase the quality of textiles
Treatment of pulp and paper		x	X			Ammonia is used in the pulp and paper industry to pulp wood and as a casein dispersant to coat paper.
Treatment of leather		X	Х			The leather industry utilises ammonia as a curing agent, as a slime and mould preservative in tanning liquors and as a protective agent for leather and furs in storage
Treatment of wood	Х		Х			Anhydrous ammonia fumes are used to darken wood in a process called "ammonia fuming"
Treatment of metal surfaces	X		X			Ammonia is used in metal treatment processes such as nitriding, carbonitriding, bright annealing, furnace brazing, sintering, sodium hydride descaling, atomic hydrogen welding and other application where protective atmospheres are required.
Treatment of rubber/latex		X	X			Concentrated aqueous ammonia is used in the rubber industry as a preservative for natural and synthetic latex due to its antibacterial and alkaline properties and as a stabiliser to prevent pre- mature coagulation (e.g. "ammoniation" of natural rubber latex.
Manufacture of semiconductors/electronics				Х		Ammonia is used in the electronics industry in the manufacturing of semiconductor chips.
Adhesives, sealants	Х			Х		
Polymer preparations	Х			Х		
Aircare products					Х	
Preservatives		Х				Ammonia is uses as a preservative for the storage of high moisture corn

Contributing Environmental Scenario: Environmental exposure arising due to Industrial end uses of anhydrous and aqueous ammonia.

Contributing Worker Scenarios: Worker exposure arising due to day to day use in closed processes with no likelihood of exposure, day to day use in closed continuous processes with occasional exposure (such as sampling), day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance), mixing and blending, transfer to small containers, transfer of substance to and from large vessels and containers, roller and brushing application of coatings, treatment of articles by dipping and pouring, laboratory use, hand mixing and industrial spraying.

2.1

Contributing scenario 1 controlling environmental exposure for ES 4

Environmental exposure arising due to industrial end uses of anhydrous and aqueous ammonia.

Section 2.1 describes the environmental releases that may occur during the industrial end uses of anhydrous and aqueous ammonia. These releases may occur due to emission to wastewater or through emission to the atmosphere. If emission to wastewater occurs on-site treatment in an industrial waste water treatment plant will be required in order to remove downstream emissions to the environment.

In reality removal of ammonia in sewage treatment plants is highly efficient being removed first by nitrification to nitrate followed by denitrification resulting in the release of nitrogen gas. It is considered that if there processes are employed complete removal from the wastewater stream will occur. Emissions to the atmosphere should not exceed concentrations of 30.5 mg/m³.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Possible exposure to ammonia during industrial end use is generally a short duration task, with limited potential for exposure.

Environmental factors influenced by risk management

Flow rate of receiving water at least 18,000 m³ per day. Dilution of any STP emissions at least 10 fold.

Other operational conditions affecting environmental exposure

Workers are fully trained in safe use and the use of appropriate systems in order to prevent accidental release. Closed systems are employed in order to prevent un-intended emissions.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed sealed. On site WWTPs should be available at industrial sites in order to eliminate emissions to the environment via contaminated wastewater.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Waste water should be emitted to the on-site industrial WWTP for specialized removal. Emissions to air from the industrial processes or from the onsite WWTP should not exceed a total concentration of 19.9 mg/m³ of air. This is approximately equivalent to a total loss to air of 70,000 kg/day. Sludge from the on-site WWTP should not be spread to soil. Any solid waste will be sent as waste for landfill, incineration or recycling.

Organizational measures to prevent/limit releases from site

Workers are fully trained in order to prevent accidental release and exposures may be monitored to ensure airborne concentrations are within acceptable levels.

Conditions and measures related to municipal STP

Direct emissions to the municipal STP should not be made.

Conditions and measures related to external treatment of waste for disposal

Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the industrial process. Sludge from the onsite WWTP should be recycled, incinerated or sent to landfill.

Conditions and measures related to external recovery of waste

There is no envisaged external recovery of waste. Waste sludge is reduced and then incinerated and emissions to air are not collected.

2.2

Contributing scenario 2 controlling worker exposure during day to day use in closed processes with no likelihood of exposure.

Worker exposure arising due to day to day use in closed processes with no likelihood of exposure during the industrial end use processes.

Section 2.2 describes the potential exposure to workers during the industrial end use of ammonia as an intermediate from operation of closed systems. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial end use is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.3 Contributing scenario 3 controlling continuous processes with occasion	worker exposure due to day to day use in closed al exposure (such as sampling)
--	---

Worker exposure arising due to day to day use in closed continuous processes with occasional exposure (such as sampling).

Section 2.3 describes the potential exposure to workers during the industrial end use of preparations of ammonia from the operation of closed systems with the potential for occasional exposure during tasks such as sampling, cleaning and maintenance. The potential exposure arises from the operation of industrial end use equipment and its associated machinery and during routine sampling, cleaning and occasional maintenance.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in these tasks. Formulated solutions are stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial end use is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

2.4 Contributing scenario 4 controlling worker exposure for day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance) Worker exposure arising due to day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance). Section 2.4 describes the potential exposure to workers during day to day use of industrial machinery, pipelines and storage vessels. Potential exposure may occur during the day to day use however it is more likely to occur during tasks associated with the batch or other processes themselves such as sampling of produced intermediates, cleaning and routine maintenance. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Solutions of ammonia are stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia). This contributing considers the potential exposures from batch and other processes (such as one off exposures) and though there is some potential for exposure generally systems are in place to control losses or unintended emissions of ammonia at the industrial facility. Product characteristics Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. Amounts used Industrial end use sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330. Frequency and duration of use exposure Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial end use during batch and other processes is generally a short duration task, with limited potential for exposure occurring in reality. Human factors not influence by risk management Respiration volume under conditions of use: 10 m³/d Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default). Other given operational conditions affecting worker exposure Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs. Technical conditions and measures at process level (source) to prevent release Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place. Technical conditions to control dispersion from source towards worker LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems. Organizational measures to prevent/limit release Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs. Conditions and measures related to personal protection, hygiene and health. Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units. The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Cool occupational business and exposure control measures are implemented to minimise the potential for worker

exposure. Work	onal hygiene and exposure control measures are implemented to minimise the potential for worker sers involved in the industrial end use of ammonia are well-trained in the required procedures and ate protective equipment.
2.5	Contributing scenario 5 controlling worker exposure for mixing and blending
Worker exposu	re arising due to mixing and blending in batch processes during industrial end use
Potential expos and mixing proc Appropriate PP ammonia is sto containers (e.g.	scribes the potential exposure to workers during mixing and blending of ammonia formulations. ure may occur during the day to day use of machinery and technologies associated with the blending cess as part of the overall industrial end use of ammonia. E and onsite controls are in place to limit the risk of exposure to workers involved in this task. Stock and transported as a liquid under pressure by rail, road or water in specialised, authorised tanks and tank trucks approved for transporting ammonia).
Product charac	
The vapour presoluble in water	nonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. ssure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very r: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily
Amounts used	
tonnes used pe number of emis	may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 r year in the European Union. According to the guidance for this tonnage band, the default REACH sion days per year are 330.
Frequency and	duration of use exposure
exposure to am	n standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential monia during industrial end use is generally a short duration task, with limited potential for exposure. not influenced by risk management
	ume under conditions of use: 10 m ³ /d ntact with the substance under conditions of use: 480cm ² (ECETOC default).
Other given ope	erational conditions affecting worker exposure
Frequent monit	Ily trained in safe use and the use of appropriate PPE in order to prevent accidental release. oring for health effects is conducted by medical surveillance programs. tions and measures at process level (source) to prevent release
Systems and tr ventilation is no system closure	ansfer pipelines should be closed and sealed. During indoor processes or in cases where natural t sufficient LEV should be in place. For outdoor processes LEV is not generally required however should still be in place.
Technical cond	tions to control dispersion from source towards worker
should be close	in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines d and sealed systems.
	measures to prevent/limit release
Workers are fu	Ily trained in safe use of the machinery associated with industrial end use and in the use of

Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.6

Contributing scenario 6 controlling worker exposure for transfer to small containers

Worker exposure arising due to transfer to small containers in a dedicated filling line.

Section 2.6 describes the potential exposure to workers during the filling of small containers in dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers themselves.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the small sized containers.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial end use is generally a short duration task, with limited potential for exposure.

Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.7

Contributing scenario 7 controlling worker exposure for transfer to and from large containers and vessels

Worker exposure arising due transfer of ammonia to and from large containers and vessels

Section 2.7 describes the potential exposure to workers during the filling and loading to/from large vessels and containers in dedicated and non-dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers and vessels themselves.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Formulated liquid ammonia is then stored and transported as a liquid in the small sized containers.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial end use is generally a short duration task, with limited potential for exposure. Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of anhydrous and aqueous forms of ammonia involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

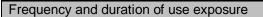
2.8	Contributing scenario 8 controlling worker exposure for roller and brushing applications of
	coatings

Worker exposure arising due to roller and brushing applications of coatings

Section 2.8 describes the potential exposure to workers during the industrial end use of ammonia during roller and brushing applications to surfaces of coatings of ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.


Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial brushing and roller applications is generally a short duration task, with limited potential for exposure.

Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place. Workers should not be directly exposed to the application solutions. Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial brushing and roller applications and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of surface applied ammonia during roller and brushing applications involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.9	Contributing scenario 9 controlling worker exposure for treatment of articles by dipping and pouring	
Worker exposure arising due to treatment of articles by dipping and pouring.		
Section 2.9 describes the potential exposure to workers during the industrial end use of ammonia during dipping and pouring treatment of articles using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.		
Product characteristics		
The vapour soluble in wa	mmonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very ater: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to le. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily le.	

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial treatment of articles by dipping and pouring is generally a short duration task, with limited potential for exposure.

Human factors not influenced by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place. Workers should not be directly exposed to the article treatment solutions. Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with industrial treatment of articles by dipping and pouring and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial treatment of articles by dipping and pouring involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.10 Contributing scenario 10 controlling worker exposure for laboratory use

Worker exposure arising due to laboratory use of ammonia (small scale non-industrial laboratories).

Section 2.10 describes the potential exposure to workers during laboratory use of ammonia especially during the filling and loading of small flasks and vessels using non-dedicated filling lines or small scale transfer methods. Potential exposure is most likely to occur during tasks associated with the actual transfer or mixing of the ammonia solutions.

For dedicated small scale laboratories appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During laboratory use of ammonia solutions of aqueous ammonia in the 5 - 25% concentrations range are most liklety to be encountered. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario.

Amounts used

Amounts use in a non-industrial setting are likely to be small with less than 1 litre or 1 kilogram present on site. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330 however actual emission of ammonia is likely to be much less frequent in practice.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Again use of ammonia is not likely to be this frequent in practice.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the laboratory end use of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

During laboratory use LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases).

All technological devices should have a proper quality certification, and should be regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not considered sufficient or in enclosed areas.

Organizational measures to prevent/limit release

Laboratory workers are fully trained in safe use of chemicals in general and in the use of appropriate PPE in order to prevent accidental release or exposure.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia during laboratory use when filling containers and vessels or during transfer. Extract ventilation is provided at openings and points were emissions may occur.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in the required procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.11 Contributing scenario 11 controlling worker exposure for hand mixing with intimate contact and PPE only

Worker exposure arising due to hand mixing with intimate contact and PPE only.

Section 2.11 describes the potential exposure to workers during the industrial end use of ammonia during hand mixing of formulations (with intimate contact and PPE only) using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia hand mixing in this case considered intimate contact and suitable PPE only.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Workers should not be directly exposed to the mixing solutions without PPE in place. LEV is generally not required.

Technical conditions to control dispersion from source towards worker

No specific measures aside from good industrial practice is required.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of mixing equipment and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Industrial hand mixing of ammonia would generally be carried out indoors using low energy methods and in vessels which should reduce the potential for un-intended loss. The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since PPE and low emission methods are used.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the hand mixing of ammonia or ammonia solutions are well-trained in the required procedures and use of appropriate protective equipment.

2.12 Contributing scenario 12 controlling worker exposure for industrial spraying

Worker exposure arising due to industrial spraying and air dispersive techniques

Section 2.12 describes the potential exposure to workers during the industrial end use of ammonia for spray aplications using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Amounts used

Industrial sites may use up to a largest individual site tonnage of 25,000 tonnes per annum, with up to 354,000 tonnes used per year in the European Union. According to the guidance for this tonnage band, the default REACH number of emission days per year are 330.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during industrial spraying is generally a short duration task, with limited potential for exposure. Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects is conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place. Workers should not be directly exposed to ammonia and ammonia containing solutions.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with this industrial end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects is conducted by medical surveillance programs.

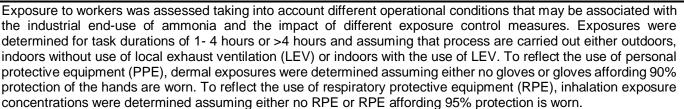
Conditions and measures related to personal protection, hygiene and health.

Industrial end-uses of sprayed ammonia during air dispersive applications involve special equipment and high integrity specialized systems.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps or tanks etc). Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the industrial end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.


3

Exposure estimation and reference to its source

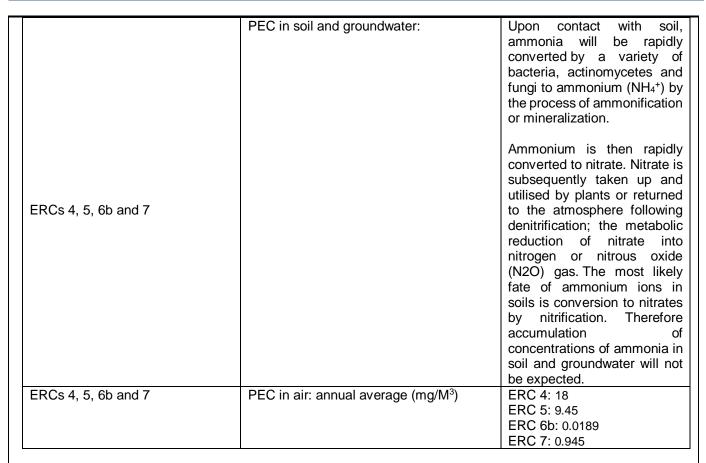
The assessment of worker exposure to anhydrous and aqueous forms of ammonia in industrial end-use applications (ES 4) was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), industrial spraying (PROC 7), maintenance and clean down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9), brush and roller applications (PROC 10), treatment of articles by dipping and pouring (PROC 13), and analysis of samples (PROC 15) and hand-mixing (PROC 19).

A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m3) associated with each process defined by PROC codes.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physicalchemical properties of a substance into account. The same dermal exposure where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight (35 g.mol⁻¹ and 17 g.mol⁻¹ for aqueous and anhydrous forms respectively) and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6 x 10⁵ Pa at 20°C, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4 x10⁴ Pa at 20°C. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.

For environmental emissions complete removal in the on-site WWTP was considered during derivation of the values below. Emission values and environmental concentrations were calculated using the EUSES 2.1 model.


Information for contributing scenario 1 (environmental exposure):

ERC	PEC	Values
ERCs 4, 5, 6b and 7	PEC in sewage effluent	0 (due to complete removal)
	PEC in aquatic compartment (mg/L):	
ERCs 4, 5, 6b and 7	Freshwater	ERC 4: 2.82 x 10 ⁻³ ERC 5: 1.46 x 10 ⁻³ ERC 6b: 4.54 x 10 ⁻⁵ ERC 7: 1.46x 10 ⁻⁴
	Marine Water	ERC 4: 6.06 x 10 ⁻⁴ ERC 5: 3.17 x 10 ⁻⁴ ERC 6b: 5.19 x 10 ⁻⁶ ERC 7: 3.17 x 10 ⁻⁵
	PEC in sediments (mg/kg):	
ERCs 4, 5, 6b and 7	Freshwater sediments	ERC 4: 3.05 x 10 ⁻³ ERC 5: 1.58 x 10 ⁻³ ERC 6b: 4.91 x 10 ⁻⁵ ERC 7: 1.58 x 10 ⁻⁴
	Marine water sediments	ERC 4: 6.56 x 10 ⁻⁴ ERC 5: 3.43 x 10 ⁻⁴ ERC 6b: 5.62 x 10 ⁻⁶ ERC 7: 3.43 x 10 ⁻⁵

The following PEC values were calculated using EUSES 2.1

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

The following RCR values were obtained:

Compartments	PEC	PNEC	PEC/PNEC	Discussion
ERC 4 Freshwater (Tier 2)	$\begin{array}{c} 2.82 \times 10^{-3} \\ \text{mg/L} (\text{Total} \\ \text{Ammonia}) \\ 1.08 \times 10^{-4} \\ \text{mg/L} \\ (\text{Free} \\ \text{Ammonia}) \end{array}$	0.0011 mg/l (Free Ammonia)	0.098	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 4 Marine water (Tier 2)	$\begin{array}{c} 6.06 \times 10^{-4} \\ \text{mg/L} (\text{Total} \\ \text{Ammonia}) \\ 2.31 \times 10^{-5} \\ \text{mg/L} \\ (\text{Free} \\ \text{Ammonia}) \end{array}$	0.0011 mg/l (Free Ammonia)	0.021	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 5 Freshwater (Tier 2)	1.46x 10^{-3} mg/L (Total Ammonia) 5.58 x 10^{-5} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	0.051	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

	_	-		
ERC 5 Marine water (Tier 2)	3.17×10^{-4} mg/L (Total Ammonia) 1.21×10^{-5} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	0.011	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 6b Freshwater (Tier 2)	4.54×10^{-5} mg/L (Total Ammonia) 1.73×10^{-6} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	1.58 x 10 ⁻³	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 6b Marine water (Tier 2)	5.19 x 10^{-6} mg/L (Total Ammonia) 1.98 x 10^{-7} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	1.80 x 10 ⁻⁴	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 7 Freshwater (Tier 2)	1.46 x 10^{-4} mg/L (Total Ammonia) 5.58 x 10^{-6} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	5.07 x 10 ⁻³	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)
ERC 7 Marine water (Tier 2)	3.17×10^{-5} mg/L (Total Ammonia) 1.21×10^{-6} mg/L (Free Ammonia)	0.0011 mg/l (Free Ammonia)	1.10 x 10 ⁻³	Conversion from Total Ammonia to Free Ammonia based on a fraction of 3.82% given for pH 8 and 25C. (Ref data tabulated in EPA document EPA-600/3-79-091)

The following values were obtained using ECETOC TRA for worker exposure

Dermal exposures predicted using the ECETOC TRA model

Description of activity	PROC	Exposure ass	umptions	Estimated Exposure mg/kg bw/d		
		Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	
Use in a closed process, no likelihood of exposure: storage (closed or bulk container)	PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	
		1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	1.37	0.14	
controlled exposure (e.g. sampling)			Indoors with LEV	0.14	0.01	

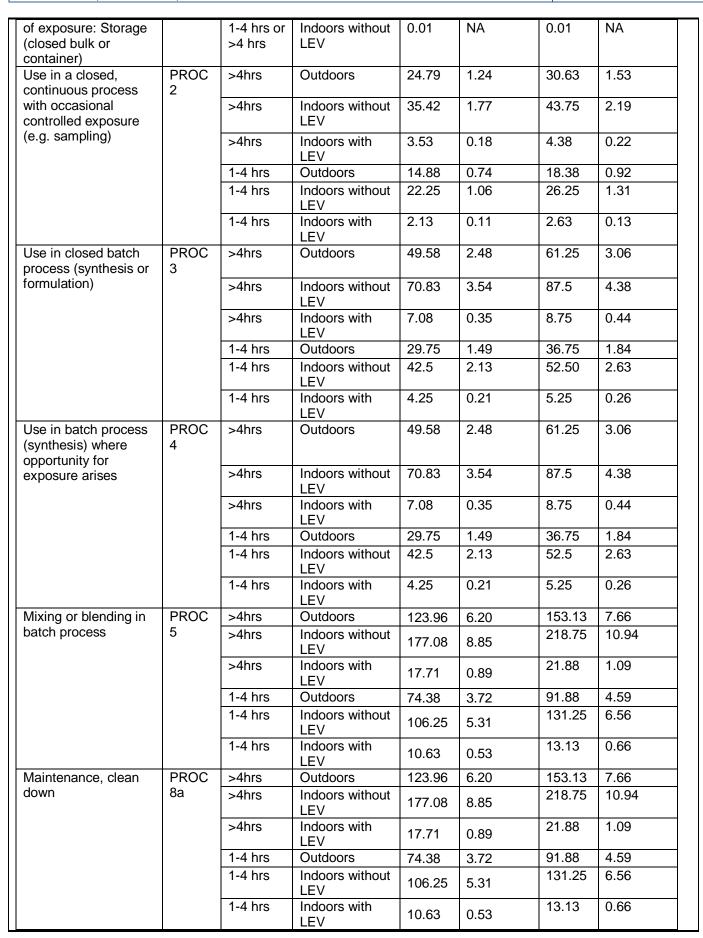
PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

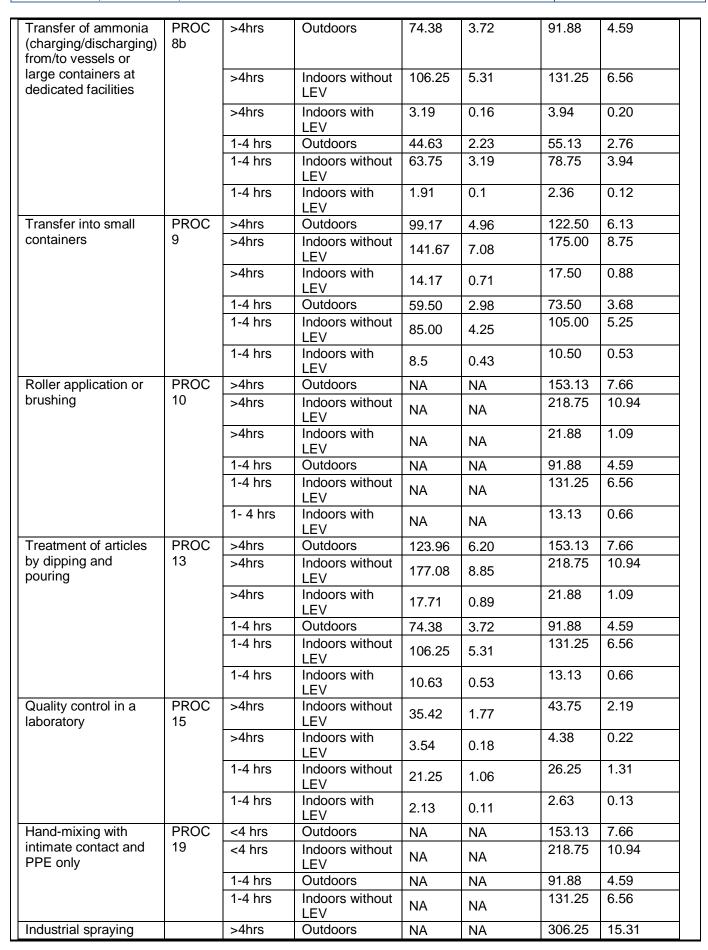
Use in closed batch process (synthesis or	PROC 3	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
formulation)	5	1-4 hrs or >4 hrs	Indoors with LEV	0.03	<0.01
Use in batch process (synthesis) where	PROC 4	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
opportunity for exposure arises		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Mixing or blending in batch process	PROC 5	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
		1-4 hrs or >4 hrs	Indoors with LEV	0.07	0.01
Transfer into small containers	PROC 9	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Transfer (charging/discharging)	PROC 8a	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
from or to vessels or large containers at non-dedicated facilities			Indoors with LEV	0.14	0.01
Transfer (charging/discharging) from or to vessels or	PROC 8b	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	6.86	0.69
large containers at dedicated facilities			Indoors with LEV	0.69	0.07
Roller application or brushing	PROC 10	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	27.43	0.14
		1-4 hrs or >4 hrs	Indoors with LEV	1.37	10.71
Treatment of articles by dipping and	PROC 13	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	13.71	1.37
pouring		1-4 hrs or >4 hrs	Indoors with LEV	0.69	0.07
Laboratory use : Quality control in a	PROC 15	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	0.34	0.03
laboratory		hrs	Indoors with LEV	0.03	<0.01
Hand-mixing with intimate contact and PPE only	PROC 19	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	141.73	14.13
Industrial spraying	PROC 7	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	42.86	4.29
		1-4 hrs or >4 hrs	Indoors with LEV	2.14	0.21

Inhalation exposure concentrations predicted using the ECETOC TRA model


				Anhydro ammoni		Aqueou (5-25% v	s ammonia w/w)
Description of activity	PROC	mg/m3					
		Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE (95% reduction)
Used in a closed process, no likelihood	PROC 1	1-4 hrs or >4 hrs	Outdoors	0.00	NA	0.01	NA

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)


Revision Date: 17.04.2024 Print Date: 17.04.2024

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

PROC 7	>4hrs	Indoors without LEV	NA	NA	437.5	21.88
	>4hrs	Indoors with LEV	NA	NA	21.88	1.09
	1-4 hrs	Outdoors	NA	NA	183.75	9.19
	1-4 hrs	Indoors without LEV	NA	NA	262.5	13.13
	1-4 hrs	Indoors with LEV	NA	NA	13.13	0.66

The following RCR values were obtained using ECETOC TRA and the relevant DNELs

Quantitative risk characterisation of dermal exposures to anhydrous or aqueous (in preparations of 5-25 % w/w) ammonia for industrial workers (ES 4 – Industrial end-use)

PROC code	Exposure	e assumptions	ES 4- expo concentra mg/kg bw/	tions (EC)	Acute / lo systemic DNEL = 6 bw/d	
					Risk characte ratio	risation
	Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	No gloves worn	Gloves worn (90% reduction)
PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01
PROC 2	1-4 hrs	Outdoors /Indoors without LEV	1.37	0.14	0.20	0.02
	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC 3	1-4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01
	or >4 hrs	Indoors with LEV	0.03	<0.01	0.01	<0.01
PROC 4	1-4 hrs	Outdoors /Indoors without LEV	6.86	0.69	1.01	0.10
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC 5	1-4 hrs	Outdoors /Indoors without LEV	13.71	1.37	2.02	0.20
	or >4 hrs	Indoors with LEV	0.07	0.01	0.01	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20
8a	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10
8b	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC 9	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
PROC	1-4 hrs	Outdoors / Indoors without LEV	27.43	2.74	4.03	0.40
10	or >4 hrs	Indoors with LEV	1.37	0.14	0.20	0.02
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20
13	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01
		Outdoors / Indoors without LEV	0.34	0.03	0.05	0.01

PiaNOx[®] - A

PIESTE

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

PROC 15	1-4 hrs or >4 hrs	Indoors	ors / Indoors without LE		Indoors with LEV 0.03 <0.01		0.01	<0.01	
PROC 19	1-4 hrs or >4 hrs				141.73	14.14	20.80	2.08	*
Interview Interview									
PROC 7				42.86	4.29	6.30	(0.63	
			Indoors with LEV	2.14	0.21	0.32	(0.03	

Quantitative risk characterisation of inhalation exposure concentrations of anhydrous ammonia for industrial workers (ES 4 – Industrial end-use)

PROC code			concent	ES 4- exposure concentrations (EC) mg/m ³		Acute / long- term systemic effects DNEL = 47.6 mg/m3		Acute-local effects DNEL = 36 mg/m3		Long-term local effects DNEL = 14 mg/m3	
					RC	R	R	CR	R	CR	
	Duration	Use of ventilation	No RPE	RPE -95% reduction	No RPE	RPE – 95%	No RPE	RPE 95% reduction	No RPE	RPE -95% reduction	
PROC	1-4	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA	
1	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA	
PROC	>4hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09	
2	1-4	Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13	
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01	
		Outdoors	14.88	0.74	0.31	0.02	0.41	0.02	1.06	0.05	
	hrs	Indoors without LEV	22.25	1.06	0.47	0.02	0.59	0.03	1.52	0.08	
		Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01	
PROC	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18	
3		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25	
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03	
	1-4 hrs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11	
	1115	Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15	
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02	
PROC	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18	
4		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25	
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03	
		Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11	

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

RITZ

	1-4 hrs	Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
	1115	Indoors with LEV	4.25	0.21	0.09	0.04	0.12	0.01	0.30	0.02
PROC	>4hrs	Outdoors	123.96	6.20	2.60	0.00	3.44	0.17	8.85	0.44
5		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	hrs	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
8a		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	1115	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
8b		Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	3.19	0.16	0.07	0.00	0.09	<0.01	0.23	0.01
	1-4 hrs	Outdoors	44.63	2.23	0.94	0.05	1.24	0.06	3.19	0.16
	1113	Indoors without LEV	63.75	3.19	1.34	0.07	1.77	0.09	4.55	0.23
		Indoors with LEV	1.91	0.10	0.04	0.00	0.05	<0.01	0.14	0.01
PROC	>4 hrs	Outdoors	99.17	4.96	2.08	0.10	2.75	0.14	7.08	0.35
9		Indoors without LEV	141.67	7.08	2.98	0.15	3.94	0.20	10.12	0.51
		Indoors with LEV	14.17	0.71	0.30	0.01	0.39	0.02	1.01	0.05
	1-4 hrs	Outdoors	59.50	2.98	1.25	0.06	1.65	0.08	4.25	0.21
	1110	Indoors without LEV	85.00	4.25	1.79	0.09	2.36	0.12	6.07	0.30
		Indoors with LEV	8.5	0.43	0.18	0.01	0.24	0.01	0.61	0.03
PROC 13	>4 hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
15		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	1110	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC 15	>4 hrs	Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4 hrs	Indoors without LEV	21.25	1.06	0.45	0.02	0.59	0.03	1.52	0.08
		Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024 ERITZ

PROC code	Εχροςι	ure assumptions		xposure trations g/m ³	Acute / term system effects DNEL = mg/m3	lic = 47.6	Acute – effects DNEL = mg/m3		Long-t local effects DNEL mg/m3	s = 14
					RC	CR	RC	R	RC	R
	Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE - 95% reduction	No RPE	RPE -95% reduction	No RPE	RPE -95% reduction
PROC	1-4	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA
1	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC	>4hrs	Outdoors	30.63	1.53	0.64	0.03	0.85	0.04	2.19	0.11
2		Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02
	1-4	Outdoors	18.38	0.92	0.39	0.02	0.51	0.03	1.31	0.07
hrs	hrs	Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01
PROC	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
3		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.50	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
4		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4 brs	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.5	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
5		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
		Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

ERITZ

	1-4 hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
8a		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC	>4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
8b		Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	3.94	0.20	0.08	0.00	0.11	0.01	0.28	0.01
	1-4	Outdoors	55.13	2.76	1.16	0.06	1.53	0.08	3.94	0.20
	hrs	Indoors without LEV	78.75	3.94	1.65	0.08	2.19	0.11	5.63	0.28
		Indoors with LEV	2.36	0.12	0.05	0.00	0.07	<0.01	0.17	0.01
PROC 9	>4hrs	Outdoors	122.50	6.13	2.57	0.13	3.40	0.17	8.75	0.44
9		Indoors without LEV	175.00	8.75	3.68	0.18	4.86	0.24	12.50	0.63
		Indoors with LEV	17.50	0.88	0.37	0.02	0.49	0.02	1.25	0.06
	1-4 brs	Outdoors	73.50	3.68	1.54	0.08	2.04	0.10	5.25	0.26
	hrs	Indoors without LEV	105.00	5.25	2.21	0.11	2.92	0.15	7.50	0.38
		Indoors with LEV	10.50	0.53	0.22	0.01	0.29	0.01	0.75	0.04
PROC 10	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	1115	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 13	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
13		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	1115	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

									-				
PROC 15	>4 hrs	Indoors without LEV	43.75		5	2.19		0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38			0.22		0.09	0.00	0.12	0.01	0.31	0.02
	1-4 hrs	Indoors without LEV	ut 26.25		5	1.31		0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV		2.63		0.13		0.06	0.00	0.07	<0.01	0.19	0.01
PROC	>4 hrs	Outdoors	153	3.13	7.	66		3.22	0.16	4.25	0.21	10.94	0.55
19		Indoors without LEV	218	3.75	10).94	4	4.60	0.23	6.08	0.30	15.63	0.78
	1-4 hrs	Outdoors	91.	.88 4.		59		1.93	0.10	2.55	0.13	6.56	0.33
		Indoors without LEV	131	131.25 6.		56		2.76	0.14	3.65	0.18	9.38	0.47
PROC	>4hrs	Outdoors	306	6.25	15	5.31	(6.43	0.32	8.51	0.43	21.88	1.09
7		Indoors without LEV	437			1.88	Ç	9.19	0.46	12.15	0.61	31.25	1.56
		Indoors with LEV	21.			09	(0.46	0.02	0.61	0.03	1.56	0.08
	1-4	Outdoors	183	3.75 9.1		19	:	3.86	0.19	5.10	0.26	13.13	0.66
	hrs	Indoors without LEV	262	2.5	13	3.13	ļ	5.51	0.28	7.29	0.36	18.75	0.94
		Indoors with LEV	13.	13	0.	66	(0.28	0.01	0.36	0.02	0.94	0.05

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environmental releases:

In order to work within the boundaries of the ES the following conditions should be met:

- Local emission to air less than 70,000 kg/day
- When the on-site WWTP is used the WWTP sludge should not be spread to soil
- Emissions from the waste-water stream should be completely removed
- Residues may be sent to external waste treatment, on-site effluent treatment or recycled back into the manufacturing process.
- Measured emissions should be ensured to lead to concentrations in the environment which are less than the relevant PNEC
- Emissions to wastewater from laboratory use should not be to the municipal STP

Worker exposure:

In order to work within the boundaries of the ES the following conditions should be met:

- LEV should be in place in indoor facilities at times when natural ventilation is not sufficient.
- Where the potential for dermal exposure exists, gloves with a minimum efficiency of 90% and RPE with 95% efficiency should be worn.
- Health monitoring should be conducted regularly to ascertain the potential levels of exposure.
- Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise.
- All technological devices should have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.
- Workers should be fully trained.

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

• Any measured worker exposure levels should be confirmed to be below the relevant DNEL as presented in section 3 above.

treatment products).

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Downstream User Exposure Scenario for Ammonia

Exposure Scenario 5: Wide-dispersive Professional Use of Anhydrous and Aqueous Ammonia

1	Exposure Scenario 5											
processing a Processes Co	Wide dispersive professional uses of anhydrous and aqueous Ammonia as processing aids, non – processing aids and auxiliary agents. Processes Covered: Environmental Releases											
ERC8b: Wide ERC8d: Wide ERC 8e: Wide ERC 9a: Wide ERC 9b: Wide	dispersive indoor use of processing aids in open systems dispersive indoor use of reactive substances in open systems dispersive outdoor use of processing aids in open systems dispersive outdoor use of reactive substances in open systems dispersive indoor use of substances in closed systems dispersive outdoor use of substances in closed systems e dispersive indoor use of long-life articles and materials with low release											
Worker Proce	esses											
PROC02: Use PROC03: Use PROC04: Use PROC05: Mixi PROC08a: Tr dedicated facil PROC08b: Traf facilities. PROC09: Traf PROC10: Roll PROC11: Non PROC13: Traf PROC15: Lab PROC19: Low	ansfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated nsfer of formulations to small containers. er application or brushing of coatings -professional spraying atment of articles by dipping and pouring											
in a broad num systems, a wa cleaning produ aid for nutrition Typical activiti equipment con	uid ammonia (>99.5 % wt) and aqueous ammonia solution (5-25% wt) are used by professional workers aber of applications. Common applications include: use as a laboratory chemical, a refrigerant in cooling ater treatment chemical, a fertiliser, a coating, paint thinner or paint remover, a photochemical, a uct, a leather or other surface treatment product, a pH regulator or neutralisation agent and a process n. es associated with the professional uses of ammonia where exposures can arise include operating ntaining ammonia (e.g. opening and closing valves), transferring ammonia from storage containers oses, maintaining equipment and applying ammonia-based products (e.g. fertiliser, cleaning or surface											

Operational conditions pertaining to the broad range of professional end-use scenarios involving anhydrous and aqueous forms of ammonia vary considerably across applications. A full characterisation of the frequency and duration of tasks is therefore beyond the scope of this exposure scenario. For the purposes of worker exposure estimation, operational conditions have been represented generically based on the assumption that tasks may be either 1-4 hours or >4 hours in duration and that processes may be carried out either outdoors, indoors without LEV or indoors with LEV. These assumptions cover the broad range of tasks associated with professional uses of ammonia.

SAFETY DATA SHEET according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
--

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Contributing Environmental Scenario: Environmental exposure arising due to Wide dispersive professional uses of anhydrous and aqueous ammonia.

Contributing Worker Scenarios: Worker exposure arising due to day to day use in closed processes with no likelihood of exposure, day to day use in closed continuous processes with occasional exposure (such as sampling), day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance), mixing and blending, transfer to small containers, transfer of substance to and from large vessels and containers, roller and brushing application of coatings, treatment of articles by dipping and pouring, laboratory use, use in heat and pressure transfer fluids, hand mixing and non-professional spraying.

S	4
۷.	

Contributing scenario 1 controlling environmental exposure for ES 5

Environmental exposure arising due to wide dispersive professional uses of anhydrous and aqueous ammonia.

Section 2.1 describes the environmental releases that may occur during the wide dispersive professional uses of anhydrous and aqueous ammonia. These releases may occur due to emission to wastewater or through emission to the atmosphere. Due to the wide dispersive nature of these uses local source emissions are expected to be very small and significant concentrations in the environment are not expected.

Low level emission may be outdoor or indoor with emission directed to air or to the STP. In reality removal of ammonia in sewage treatment plants is highly efficient as ammonia solutions are readily biodegradable.

The majority of ammonia in the environment originates from natural sources, predominantly decaying organic matter. Wide dispersive professional uses of ammonia are diverse and widespread. The resulting environmental exposure is not expected to add significantly to already present background levels of ammonia in the environment. An additional assessment for environmental exposure for wide dispersive uses has therefore not been presented in section 3 below.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Professional use is expected to see very small amounts used on a local scale with use widespread throughout the EU.

Frequency and duration of use

Variable low level use.

Environmental factors influenced by risk management

Large regional dilution and wide dispersive use pattern.

Other operational conditions affecting environmental exposure

Professional workers should be informed in order to prevent accidental release. Closed systems are employed in articles 9such as fridges) in order to prevent un-intended emissions.

Technical conditions and measures at process level (source) to prevent release

Closed articles for long-life use.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

None-specifically required beyond standard good practice for professional workers.

Organizational measures to prevent/limit releases from site

Workers are trained in order to prevent accidental releases.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Conditions and measures related to municipal STP

Small low level local emissions may be released to the STP where removal is expected to be efficient due to the readily biodegradable nature of low concentration ammonia solutions.

Conditions and measures related to external treatment of waste for disposal

Any residual waste (such as empty bottles or old fridges and cooling systems) should be sent to landfill or for specialized disposal.

Conditions and measures related to external recovery of waste

There is no envisaged external recovery of ammonia waste.

2.2 Contributing scenario 2 controlling worker exposure day to day use in closed processes with no likelihood of exposure.

Worker exposure arising due to day to day use in closed processes with no likelihood of exposure during the professional end use processes.

Section 2.2 describes the potential exposure to workers during the professional end use of ammonia as an intermediate from operation of closed systems. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional end use is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

PiaNOx[®] - A

Revision Date: 17.04.2024 Print Date: 17.04.2024

spraying machine emission may oc controlled ventila face/eye protection All technological uncontrolled disc Good occupation professional work	tentially be exposed to ammonia when conducting field activities (e.g. when operating valves, ery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were actur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or ation is applied when maintenance activities are carried out. Personal protective clothing (e.g. on, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. devices have a proper quality certification, and are regularly controlled and maintained to avoid the harge of ammonia. mal hygiene and exposure control measures are implemented to minimise the potential for ker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained procedures and use of appropriate protective equipment.							
2.3	Contributing scenario 3 controlling worker exposure due to day to day use in closed continuous processes with occasional exposure (such as sampling)							
Worker exposure sampling).	e arising due to day to day use in closed continuous processes with occasional exposure (such as							
Section 2.3 descr from the operation cleaning and main its associated mathematic Appropriate PPE	ribes the potential exposure to workers during the professional end use of preparations of ammonia on of closed systems with the potential for occasional exposure during tasks such as sampling, ntenance. The potential exposure arises from the operation of professional end use equipment and achinery and during routine sampling, cleaning and occasional maintenance. and onsite controls are in place to limit the risk of exposure to workers involved in these tasks. ions are stored and transported as a liquid under pressure by rail, road or water in specialised,							
authorised contai	iners (e.g. tanks and tank trucks approved for transporting ammonia).							
Anhydrous amm The vapour pres soluble in water: flammable. Form biodegradable.	Product characteristics Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.							
Amounts used								
Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use. Frequency and duration of use exposure								
Workers perform	standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential nonia during professional end use may generally arise during a short duration task, with limited							
Human factors no	ot influence by risk management							
Area of skin cont	ne under conditions of use: 10 m ³ /d act with the substance under conditions of use: 480cm ² (ECETOC default).							
	Other given operational conditions affecting worker exposure							
Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.								
Technical conditions and measures at process level (source) to prevent release								
Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible. Technical conditions to control dispersion from source towards worker								
LEV should be in should be closed	and sealed systems. easures to prevent/limit release							
Workers are fully appropriate PPE	y trained in safe use of the machinery associated with professional end use and in the use of in order to prevent accidental release or unintended exposure. Frequent monitoring for health onducted by medical surveillance programs.							

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units. The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for professional worker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.4

Contributing scenario 4 controlling worker exposure for day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance)

Worker exposure arising due to day to day use in batch or other processes with some potential for exposure (such as sampling, cleaning, maintenance).

Section 2.4 describes the potential exposure to workers during day to day use of professional machinery, pipelines and storage vessels. Potential exposure may occur during the day to day use however it is more likely to occur during tasks associated with the batch or other processes themselves such as cleaning and routine maintenance.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Solutions of ammonia are stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

This contributing considers the potential exposures from batch and other processes (such as one off exposures) and though there is some potential for exposure generally systems are in place to control losses or unintended emissions of ammonia at the professional facility.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional end use during batch and other processes is generally a short duration task, with limited potential for exposure occurring in reality.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units. The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for professional worker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.5	Contributing scenario 5 controlling worker exposure for mixing and blending
-----	---

Worker exposure arising due to mixing and blending in batch processes during professional end use

Section 2.5 describes the potential exposure to workers during mixing and blending of ammonia formulations. Potential exposure may occur during the day to day use of machinery and technologies associated with the blending and mixing process as part of the overall professional end use of ammonia.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Stock ammonia is stored and transported as a liquid under pressure by rail, road or water in specialised, authorised containers (e.g. tanks and tank trucks approved for transporting ammonia).

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional end use is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for professional worker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.6 Contributing scenario 6 controlling worker exposure for transfer to small containers

Worker exposure arising due to transfer to small containers in a dedicated filling line.

Section 2.6 describes the potential exposure to workers during the filling of small containers in dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers themselves. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional end use is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for professional worker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.7 Contributing scenario 7 controlling worker exposure for transfer to and from large containers and vessels

Worker exposure arising due transfer of ammonia to and from large containers and vessels

Section 2.7 describes the potential exposure to workers during the filling and loading to/from large vessels and containers in dedicated and non-dedicated filling lines. Potential exposure is most likely to occur during tasks associated with the actual filling of the containers and vessels themselves.

Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional end use is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

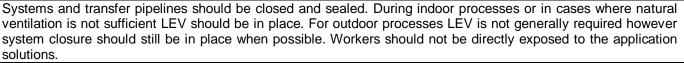
Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional end use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of anhydrous and aqueous forms of ammonia are diverse and should generally be carried out using specialized contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professionals to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room whenever possible.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps, tanks or during mixing etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise. All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the


All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for professional worker exposure. Workers involved in the wide dispersive professional uses of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.8	Contributing scenario 8 controlling worker exposure for roller and brushing applications of coatings								
Worker exposi	ure arising due to roller and brushing applications of coatings								
and brushing a	Section 2.8 describes the potential exposure to workers during the professional end use of ammonia during roller and brushing applications to surfaces of coatings of ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.								
Product chara	cteristics								
The vapour pr soluble in wate	Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.								
Amounts used									
	Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.								
Frequency and	d duration of use exposure								
exposure to a	Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional brushing and roller applications is generally a short duration task, with limited potential for exposure.								
Human factors	s not influence by risk management								
Area of skin co	Respiration volume under conditions of use: 10 m ³ /d Area of skin contact with the substance under conditions of use: 480cm ² (ECETOC default).								
Other given operational conditions affecting worker exposure									
	Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.								
Technical con	ditions and measures at process level (source) to prevent release								
	95/111								

Revision Date: 17.04.2024 Print Date: 17.04.2024

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of surface applied ammonia during roller and brushing applications involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professional workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, brushing equipment, pumps or tanks etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the professional end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.9 Contributing scenario 9 controlling worker exposure for treatment of articles by dipping and pouring

Worker exposure arising due to treatment of articles by dipping and pouring.

Section 2.9 describes the potential exposure to workers during the professional end use of ammonia during dipping and pouring treatment of articles using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional treatment of articles by dipping and pouring is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

SAFETY DATA SHEET	according~~to~~Regulation~~(EC)~~No.~~1907/2006(REACH)
-------------------	--

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible. Workers should not be directly exposed to the article treatment solutions.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of surface applied ammonia during roller and brushing applications involve special equipment and high integrity contained systems with little or no potential for worker exposure. Facilities may be housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for professional workers to be exposed to ammonia during these processes is therefore negligible since they are located in a separate control room.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). Extract ventilation is provided at openings and points were emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the professional end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.10 Contributing scenario 10 controlling worker exposure for laboratory use

Worker exposure arising due to laboratory use of ammonia.

Section 2.10 describes the potential exposure to workers during laboratory use of ammonia especially during the filling and loading of small flasks and vessels using non-dedicated filling lines or small scale transfer methods. Potential exposure is most likely to occur during tasks associated with the actual transfer or mixing of the ammonia solutions.

For dedicated small scale laboratories appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable.

During laboratory use of ammonia solutions of aqueous ammonia in the 5 - 25% concentrations range are most liklety to be encountered. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable. It is this aqueous ammonia that is most likely to cause potential exposure for this contributing scenario.

Amounts used

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

Amounts use in a professional setting are likely to be small with less than 1 litre or 1 kilogram present on site. According to the guidance for this tonnage band, the default REACH number of emission days per year are 365 for wide dispersive uses however actual emission of ammonia is likely to be much less frequent in practice.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Again use of ammonia is not likely to be this frequent in practice.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

During the laboratory end use of ammonia indoors local exhaust ventilation may be in place. Personal protective equipment is also used to minimize the potential for dermal exposure during the transfer process. RPE is provided when required.

Technical conditions and measures at process level (source) to prevent release

During laboratory use LEV may or may not be in place (refer to section 3 below for relevant exposure levels for these cases).

All technological devices should have a proper quality certification, and should be regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not considered sufficient or in enclosed areas.

Organizational measures to prevent/limit release

Laboratory workers are fully trained in safe use of chemicals in general and in the use of appropriate PPE in order to prevent accidental release or exposure.

Conditions and measures related to personal protection, hygiene and health.

Workers may potentially be exposed to ammonia during laboratory use when filling containers and vessels or during transfer. Extract ventilation is provided at openings and points were emissions may occur.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers are well-trained in the required procedures and the use of appropriate protective equipment.

Where good natural ventilation is found to be inadequate, mechanical (general) ventilation or local exhaust ventilation (LEV) is provided. Personal protective clothing (e.g. face/eye/ear protection, helmet, gloves boots and protective overall) is worn when any potential contact may arise.

Level A clothing (full encapsulating suit with self contained breathing apparatus) is used when handling large liquid spills or vapour clouds. Impervious clothing and rubber gloves are used for small liquid spills and normal loading and unloading operations. Safety shower/eye wash facilities are provided at sites which handle or store ammonia. Filtering respiratory masks are worn in case on the accidental release of ammonia.

2.11

Contributing scenario 11 controlling worker exposure for hand mixing with intimate contact and PPE only

Worker exposure arising due to hand mixing with intimate contact and PPE only.

Section 2.11 describes the potential exposure to workers during the professional end use of ammonia during hand mixing of formulations (with intimate contact and PPE only) using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task. Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia hand mixing in this case considered intimate contact and suitable PPE only.

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Workers should not be directly exposed to the mixing solutions without PPE in place. LEV is generally not required.

Technical conditions to control dispersion from source towards worker

No specific measures aside from good professional practice is required.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of mixing equipment and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional hand mixing of ammonia would generally be carried out indoors using low energy methods and in vessels which should reduce the potential for un-intended loss. The potential for professional workers to be exposed to ammonia during these processes is therefore negligible since PPE and low emission methods are used. All technological devices have a proper guality certification, and are regularly controlled and maintained to avoid the

uncontrolled discharge of ammonia. Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the hand mixing of ammonia or ammonia solutions are well-trained in the required procedures and use of appropriate protective equipment.

2.12

Contributing scenario 12 controlling worker exposure for professional spraying

Worker exposure arising due to professional spraying and air dispersive techniques

Section 2.12 describes the potential exposure to workers during the professional end use of ammonia for spray applications using ammonia or ammonia containing solutions. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during professional spraying is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however system closure should still be in place when possible. Workers should not be directly exposed to the spraying solutions.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of sprayed ammonia during air dispersive applications involve special equipment and high integrity specialized systems.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps or tanks etc). Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the professional end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

2.13 Contributing scenario 13 controlling worker exposure for use in heat and pressure transfer fluids

Worker exposure arising due to use in heat and pressure transfer fluids

Section 2.2 describes the potential exposure to workers during the professional end use of ammonia use in heat and pressure transfer fluid applications of ammonia based solutions in dispersive but closed systems. Appropriate PPE and onsite controls are in place to limit the risk of exposure to workers involved in this task.

Product characteristics

Anhydrous ammonia is a colourless gas at room temperature and pressure with a typical purity of around 99.9%. The vapour pressure of ammonia, anhydrous is reported to be 8611 hPa at 20 °C. Anhydrous ammonia is very soluble in water: reported water solubility values are 482000-531000 mg/L. Anhydrous ammonia is considered to be flammable. Formulated aqueous ammonia has a vapour pressure of 287 hPa and is considered readily biodegradable.

Amounts used

Small amounts are expected to be used on professional sites each year. As wide dispersive uses significant on-site tonnages are not expected for professional use.

Frequency and duration of use exposure

Workers perform standard shifts of 8 hours per day and have standard working years of 220 days per year. Potential exposure to ammonia during use in heat and pressure transfer fluids is generally a short duration task, with limited potential for exposure.

Human factors not influence by risk management

Respiration volume under conditions of use: 10 m³/d

Area of skin contact with the substance under conditions of use: 480cm² (ECETOC default).

Other given operational conditions affecting worker exposure

Workers are fully trained in safe use and the use of appropriate PPE in order to prevent accidental release. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Technical conditions and measures at process level (source) to prevent release

Systems and transfer pipelines should be closed and sealed. During indoor processes or in cases where natural ventilation is not sufficient LEV should be in place. For outdoor processes LEV is not generally required however

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

system closure should still be in place when possible. Workers should not be directly exposed to the treatment solutions.

Technical conditions to control dispersion from source towards worker

LEV should be in place during indoor operations when natural ventilation is not sufficient. Reactors and pipelines should be closed and sealed systems when possible.

Organizational measures to prevent/limit release

Workers are fully trained in safe use of the machinery associated with professional intermediate use and in the use of appropriate PPE in order to prevent accidental release or unintended exposure. Frequent monitoring for health effects may be conducted by medical surveillance programs.

Conditions and measures related to personal protection, hygiene and health.

Professional end-uses of ammonia lubricants for use in heat and pressure transfer fluid applications involve special equipment and high integrity specialized systems.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, spraying machinery, pumps or tanks etc). Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

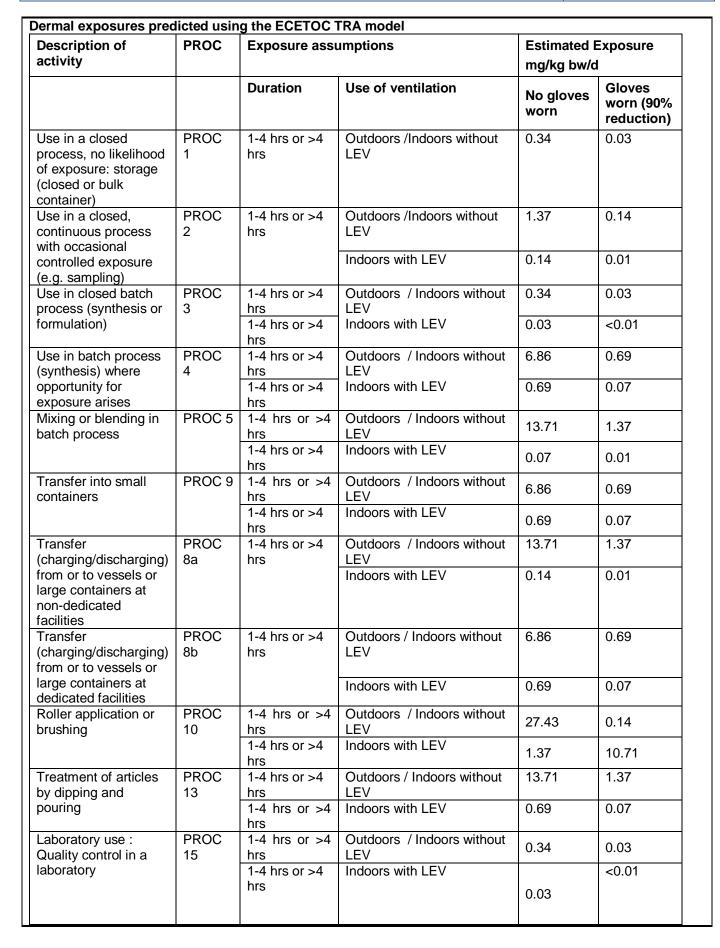
Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the professional end use of ammonia are well-trained in the required procedures and use of appropriate protective equipment.

3

Exposure estimation and reference to its source

The assessment of worker exposure to anhydrous and aqueous ammonia during professional uses (ES 5) was carried out for process categories relevant to this scenario as identified by PROC codes: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), maintenance and clean-down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9), brush and roller applications (PROC 10), spraying (PROC 11), treatment of articles by dipping and pouring (PROC 13), and analysis of samples (PROC 15), hand-mixing (PROC 19) and heat and pressure transfer in closed systems (PROC 20).

A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes.


Exposure to workers was assessed taking into account different operational conditions that may be associated with the professional use of ammonia and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90% protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposures concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

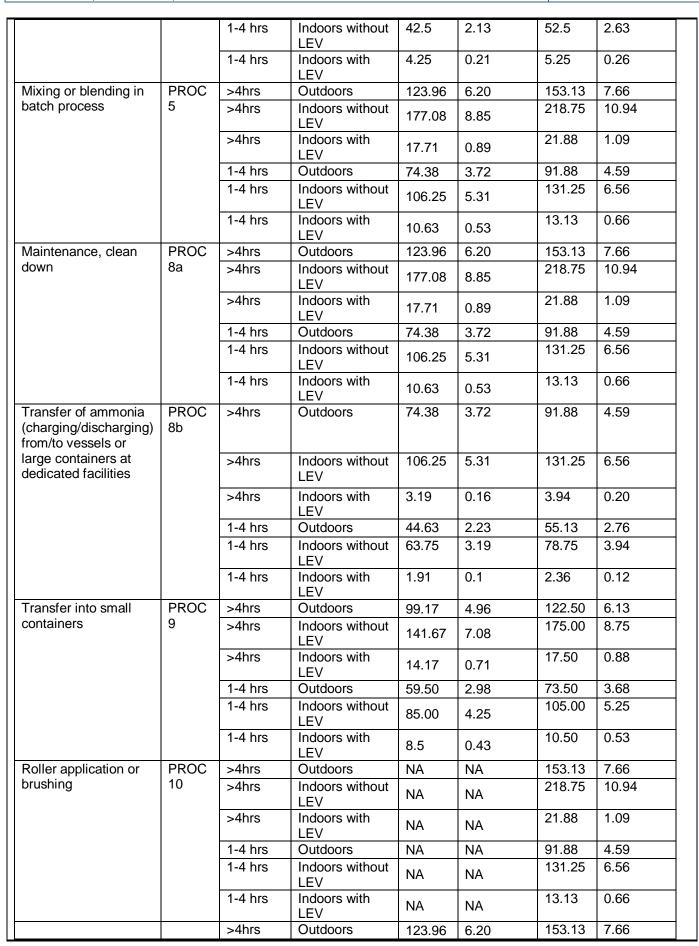
The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physicalchemical properties of a substance into account. The same dermal exposures where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight (35 g.mol⁻¹ and 17 g.mol⁻¹ for aqueous and anhydrous forms respectively and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6 x 10⁵ Pa at 20°C, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4 x10⁴ Pa at 20°C. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.

The following values were obtained using ECETOC TRA for worker exposure

PiaNOx[®] - A

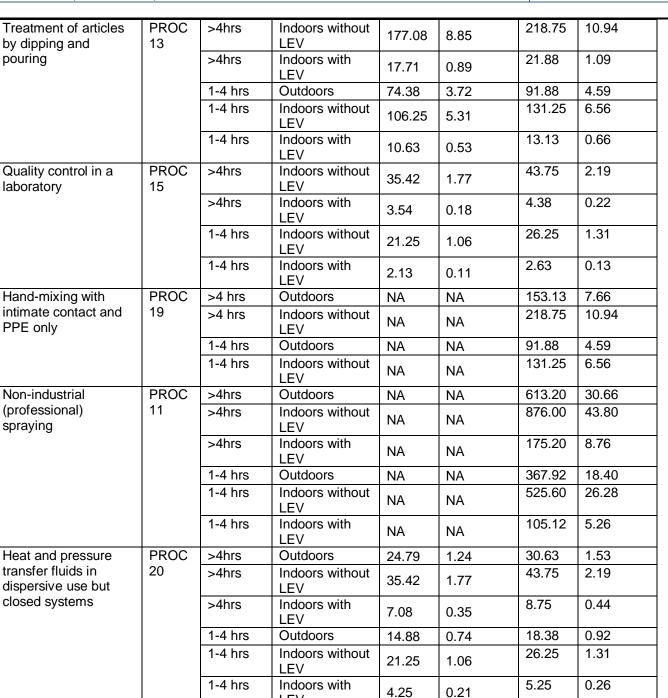
Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024


Hand-mixing with intimate contact and PPE only	PROC 19	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	141.73	14.13
Non industrial spraying	PROC 11	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	107	10.71
		1-4 hrs or >4 hrs	Indoors with LEV	2.14	0.21
Heat and pressure transfer fluids in dispersive use but closed systems	PROC 20	1-4 hrs or >4 hrs	Outdoors / Indoors without LEV	1.71	0.17
		1-4 hrs or >4 hrs	Indoors with LEV	0.14	0.01

Inhalation exposure concentrations predicted using the ECETOC TRA model

•		•		Anhydr ammor		Aqueou (5-25%	us ammonia w/w)	
Description of activity	PROC	Exposure assumptions		Estimated Exposure Concentration mg/m3				
		Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE (95% reduction)	
Used in a closed process, no likelihood	PROC 1	1-4 hrs or >4 hrs	Outdoors	0.00	NA	0.01	NA	
of exposure: Storage (closed bulk or container)		1-4 hrs or >4 hrs	Indoors without LEV	0.01	NA	0.01	NA	
Use in a closed, continuous process	PROC 2	>4hrs	Outdoors	24.79	1.24	30.63	1.53	
with occasional controlled exposure		>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19	
(e.g. sampling)		>4hrs	Indoors with LEV	3.53	0.18	4.38	0.22	
		1-4 hrs	Outdoors	14.88	0.74	18.38	0.92	
		1-4 hrs	Indoors without LEV	22.25	1.06	26.25	1.31	
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13	
Use in closed batch process (synthesis or	PROC 3	>4hrs	Outdoors	49.58	2.48	61.25	3.06	
formulation)		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38	
		>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44	
		1-4 hrs	Outdoors	29.75	1.49	36.75	1.84	
		1-4 hrs	Indoors without LEV	42.5	2.13	52.50	2.63	
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26	
Use in batch process (synthesis) where opportunity for	PROC 4	>4hrs	Outdoors	49.58	2.48	61.25	3.06	
exposure arises		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38	
		>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44	
		1-4 hrs	Outdoors	29.75	1.49	36.75	1.84	



Revision Date: 17.04.2024 Print Date: 17.04.2024

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

LEV

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN) Revision Date: 17.04.2024 Print Date: 17.04.2024

Quantitative risk characterisation of dermal exposures to anhydrous or aqueous (in preparations of 5-25 % w/w) ammonia for professional workers (ES 5 – Professional end-use)

PROC code	Exposure	e assumptions	ES 5- expe concentra mg/kg bw/	tions (EC)	Acute / long term systemic effects DNEL = 6.8 mg/kg bw/d Risk characterisation ratio		
	Duration	Use of ventilation	No gloves worn	Gloves worn (90% reduction)	No gloves worn	Gloves worn (90% reduction)	
PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01	
PROC 2	1-4 hrs	Outdoors /Indoors without LEV	1.37	0.14	0.20	0.02	
	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01	
PROC 3	1-4 hrs	Outdoors /Indoors without LEV	0.34	0.03	0.05	0.01	
	or >4 hrs		0.03	<0.01	0.01	<0.01	
PROC 4	1-4 hrs	Outdoors /Indoors without LEV	6.86	0.69	1.01	0.10	
or >4 hrs		Indoors with LEV	0.69	0.07	0.10	0.01	
PROC 5	1-4 hrs	Outdoors /Indoors without LEV	13.71	1.37	2.02	0.20	
	or >4 hrs	Indoors with LEV	0.07	0.01	0.01	<0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20	
8a	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01	
PROC	hrs Indoors with LEV 1-4 hrs Outdoors / Indoors without LEV		6.86	0.69	1.01	0.10	
8b	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01	
PROC 9	1-4 hrs	Outdoors / Indoors without LEV	6.86	0.69	1.01	0.10	
	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	13.71	1.37	2.02	0.20	
13	or >4 hrs	Indoors with LEV	0.69	0.07	0.10	0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	0.34	0.03	0.05	0.01	
15	or >4 hrs	Indoors with LEV	0.03	<0.01	0.01	<0.01	
PROC	1-4 hrs	Outdoors / Indoors without LEV	1.71	0.17	0.25	0.03	
20	or >4 hrs	Indoors with LEV	0.14	0.01	0.02	<0.01	

Quantitative risk characterisation of inhalation exposure concentrations of anhydrous ammonia for professional workers (ES 5 – Professional end-use)

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

PROC code	Exposu	ire assumptions	ES 5- exposur concent (EC) mg	rations	Acute / term systemi effects DNEL = mg/m3 RC	ic 47.6	Acute-I effects DNEL = mg/m3		Long-term local effects DNEL = 14 mg/m3 RCR	
	Duration	Use of ventilation	No RPE	RPE -95% reduction	No RPE	RPE -	No RPE	RPE 95% reduction	No RPE	RPE -95% reduction
PROC	1-4	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA
1	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC	>4hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09
2		Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4 hrs	Outdoors Indoors without	14.88 22.25	0.74	0.31	0.02	0.41 0.59	0.02	1.06 1.52	0.05 0.08
		LEV Indoors with LEV	2.13	0.11	0.47	0.02	0.00	0.04	0.45	0.04
	>4hrs	Outdoors	49.58	2.48	0.04	0.00	0.06	< 0.01	0.15	0.01
PROC 3		Indoors without	70.83	3.54	1.04 1.49	0.05	1.38 1.97	0.07	3.54 5.06	0.18 0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 hrs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
		Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC	>4hrs	Outdoors	49.58	2.48	1.04	0.05	1.38	0.07	3.54	0.18
4		Indoors without LEV	70.83	3.54	1.49	0.07	1.97	0.10	5.06	0.25
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 hrs	Outdoors	29.75	1.49	0.63	0.03	0.83	0.04	2.13	0.11
		Indoors without LEV	42.5	2.13	0.89	0.04	1.18	0.06	3.04	0.15
	. Abro	Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02
PROC 5	>4hrs	Outdoors Indoors without	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
2		LEV Indoors with LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
	1-4	Outdoors	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	hrs	Indoors without	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
		LEV Indoors with LEV	106.25 10.63	5.31 0.53	2.23	0.11	2.95 0.30	0.15	7.59 0.76	0.38
PROC	>4hrs	Outdoors	123.96	6.20	0.22	0.01		0.01	-	0.04
8a	- 1110	Indoors without	123.96	6.20 8.85	2.60 3.72	0.13	3.44 4.92	0.17	8.85 12.65	0.44

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	1115	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC	>4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
8b	1-4	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	3.19	0.16	0.07	0.00	0.09	<0.01	0.23	0.01
		Outdoors	44.63	2.23	0.94	0.05	1.24	0.06	3.19	0.16
	hrs	Indoors without LEV	63.75	3.19	1.34	0.07	1.77	0.09	4.55	0.23
		Indoors with LEV	1.91	0.10	0.04	0.00	0.05	<0.01	0.14	0.01
PROC	>4 hrs	Outdoors	99.17	4.96	2.08	0.10	2.75	0.14	7.08	0.35
9		Indoors without LEV	141.67	7.08	2.98	0.15	3.94	0.20	10.12	0.51
		Indoors with LEV	14.17	0.71	0.30	0.01	0.39	0.02	1.01	0.05
	1-4	Outdoors	59.50	2.98	1.25	0.06	1.65	0.08	4.25	0.21
	hrs	Indoors without LEV	85.00	4.25	1.79	0.09	2.36	0.12	6.07	0.30
		Indoors with LEV	8.5	0.43	0.18	0.01	0.24	0.01	0.61	0.03
PROC	>4 hrs	Outdoors	123.96	6.20	2.60	0.13	3.44	0.17	8.85	0.44
13		Indoors without LEV	177.08	8.85	3.72	0.19	4.92	0.25	12.65	0.63
		Indoors with LEV	17.71	0.89	0.37	0.02	0.49	0.02	1.26	0.06
	1-4 hrs	Outdoors	74.38	3.72	1.56	0.08	2.07	0.10	5.31	0.27
	1115	Indoors without LEV	106.25	5.31	2.23	0.11	2.95	0.15	7.59	0.38
		Indoors with LEV	10.63	0.53	0.22	0.01	0.30	0.01	0.76	0.04
PROC 15	>4 hrs	Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
		Indoors with LEV	3.54	0.18	0.07	0.00	0.10	<0.01	0.25	0.01
	1-4 hrs	Indoors without LEV	21.25	1.06	0.45	0.02	0.59	0.03	1.52	0.08
		Indoors with LEV	2.13	0.11	0.04	0.00	0.06	<0.01	0.15	0.01
PROC 20	>4 hrs	Outdoors	24.79	1.24	0.52	0.03	0.69	0.03	1.77	0.09
20		Indoors without LEV	35.42	1.77	0.74	0.04	0.98	0.05	2.53	0.13
		Indoors with LEV	7.08	0.35	0.15	0.01	0.20	0.01	0.51	0.03
	1-4 hrs	Outdoors	14.88	0.74	0.31	0.02	0.41	0.02	1.06	0.05
	1115	Indoors without LEV	21.25	1.06	0.45	0.02	0.59	0.03	1.52	0.08
		Indoors with LEV	4.25	0.21	0.09	0.00	0.12	0.01	0.30	0.02

Quantitative risk characterisation of inhalation exposure concentrations of aqueous ammonia (in preparations of 5-25% w/w) in professional workers (ES 5 – Professional end-use)

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

RITZ

PROC Exposure code assumptions			ns ES 5- exposure concentrations (EC) mg/m ³		Acute /lor term syste effects DNEL = 4 mg/m3	emic	Acute – Id effects DNEL = 3 mg/m3		Long-term local effects DNEL = 14 mg/m3	
					RCF	र	RC	R	RCR	
	Duration	Use of ventilation	No RPE	RPE (95% reduction)	No RPE	RPE - 95% reduction	No RPE	RPE -95% reduction	No RPE	RPE -95% reduction
PROC	1-4	Outdoors	0.00	NA	<0.01	NA	<0.01	NA	<0.01	NA
1	hrs or >4 hrs	Indoors without LEV	0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
PROC	>4hrs	Outdoors	30.63	1.53	0.64	0.03	0.85	0.04	2.19	0.11
2		Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02
	1-4	Outdoors	18.38	0.92	0.39	0.02	0.51	0.03	1.31	0.07
	hrs	Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01
PROC 3	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.50	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC	>4hrs	Outdoors	61.25	3.06	1.29	0.06	1.70	0.09	4.38	0.22
4		Indoors without LEV	87.5	4.38	1.84	0.09	2.43	0.12	6.25	0.31
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
	1-4	Outdoors	36.75	1.84	0.77	0.04	1.02	0.05	2.63	0.13
	hrs	Indoors without LEV	52.5	2.63	1.10	0.06	1.46	0.07	3.75	0.19
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
PROC	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
5		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05

PiaNOx[®] - A

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

RITZ

	T		1	1				1		· · · ·
PROC	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
8a		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs -	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	nrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC	>4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
8b		Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	3.94	0.20	0.08	0.00	0.11	0.01	0.28	0.01
	1-4	Outdoors	55.13	2.76	1.16	0.06	1.53	0.08	3.94	0.20
	hrs	Indoors without LEV	78.75	3.94	1.65	0.08	2.19	0.11	5.63	0.28
		Indoors with LEV	2.36	0.12	0.05	0.00	0.07	<0.01	0.17	0.01
PROC	>4hrs	Outdoors	122.50	6.13	2.57	0.13	3.40	0.17	8.75	0.44
9	1-4 hrs	Indoors without LEV	175.00	8.75	3.68	0.18	4.86	0.24	12.50	0.63
		Indoors with LEV	17.50	0.88	0.37	0.02	0.49	0.02	1.25	0.06
		Outdoors	73.50	3.68	1.54	0.08	2.04	0.10	5.25	0.26
		Indoors without LEV	105.00	5.25	2.21	0.11	2.92	0.15	7.50	0.38
		Indoors with LEV	10.50	0.53	0.22	0.01	0.29	0.01	0.75	0.04
PROC 10	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
10		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
		Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
	1-4 hrs	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	1113	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 13	>4hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
13		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
	1-4	Indoors with LEV	21.88	1.09	0.46	0.02	0.61	0.03	1.56	0.08
		Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
	hrs	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
		Indoors with LEV	13.13	0.66	0.28	0.01	0.36	0.02	0.94	0.05
PROC 15	>4 hrs	Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
		Indoors with LEV	4.38	0.22	0.09	0.00	0.12	0.01	0.31	0.02

Identcode: 0043 Version: 6.0 (MSDS_DE/EN)

Revision Date: 17.04.2024 Print Date: 17.04.2024

		idance to DU t		owhothor	ho works in	seida th	o boundar	ios sot b	v the ES	
		Indoors with LEV	5.25	0.26	0.11	0.01	0.15	0.01	0.38	0.02
	hrs	Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09
	1-4	Outdoors	18.38	0.92	0.39	0.02	0.51	0.03	1.31	0.07
		Indoors with LEV	8.75	0.44	0.18	0.01	0.24	0.01	0.63	0.03
20		Indoors without LEV	43.75	2.19	0.92	0.05	1.22	0.06	3.13	0.16
PROC	>4hrs	Outdoors	30.63	1.53	0.64	0.03	0.85	0.04	2.19	0.11
		Indoors with LEV	105.12	5.26	2.21	0.11	2.92	0.15	7.51	0.38
	hrs	Indoors without LEV	525.60	26.28	11.04	0.55	14.60	0.73	37.54	1.88
	1-4	Outdoors	367.92	18.40	7.73	0.39	10.22	0.51	26.28	1.31
		Indoors with LEV	175.20	8.76	3.68	0.18	4.87	0.24	12.51	0.63
11		Indoors without LEV	876.00	43.80	18.40	0.92	24.33	1.22	62.57	3.13
PROC	>4hrs	Outdoors	613.20	30.66	12.88	0.64	17.03	0.85	43.80	2.19
hrs	1115	Indoors without LEV	131.25	6.56	2.76	0.14	3.65	0.18	9.38	0.47
	1-4	Outdoors	91.88	4.59	1.93	0.10	2.55	0.13	6.56	0.33
19		Indoors without LEV	218.75	10.94	4.60	0.23	6.08	0.30	15.63	0.78
PROC	>4 hrs	Outdoors	153.13	7.66	3.22	0.16	4.25	0.21	10.94	0.55
		Indoors with LEV	2.63	0.13	0.06	0.00	0.07	<0.01	0.19	0.01
	1-4 hrs	Indoors without LEV	26.25	1.31	0.55	0.03	0.73	0.04	1.88	0.09

Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environmental releases:

• As no environmental exposure is presented no specific requirements aside from standard good professional practices are needed

Worker exposure:

In order to work within the boundaries of the ES the following conditions should be met:

- LEV should be in place in indoor facilities at times when natural ventilation is not sufficient.
- Where the potential for dermal exposure exists, gloves with a minimum efficiency of 90% and RPE with 95% efficiency should be worn.
- Health monitoring should be conducted regularly to ascertain the potential levels of exposure.
- Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise.
- All technological devices should have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.
- Workers should be fully trained.
- Any measured worker exposure levels should be confirmed to be below the relevant DNEL as presented in section 3 above.